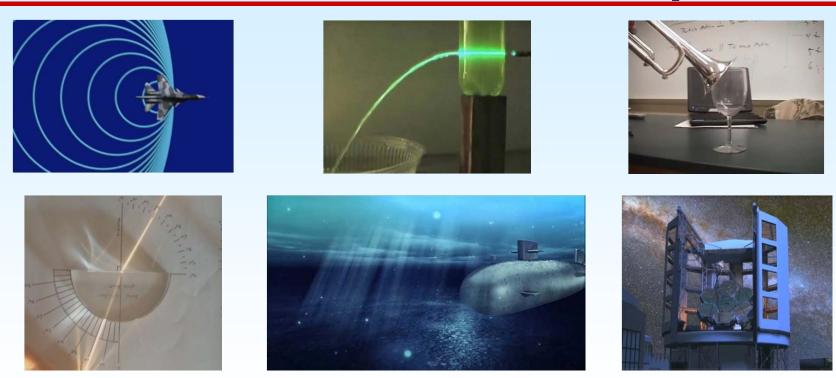
ALL CONTRACTOR OF CONTRACTOR O

Wavemechanics and optics



Chapter 15 - Mechanical waves

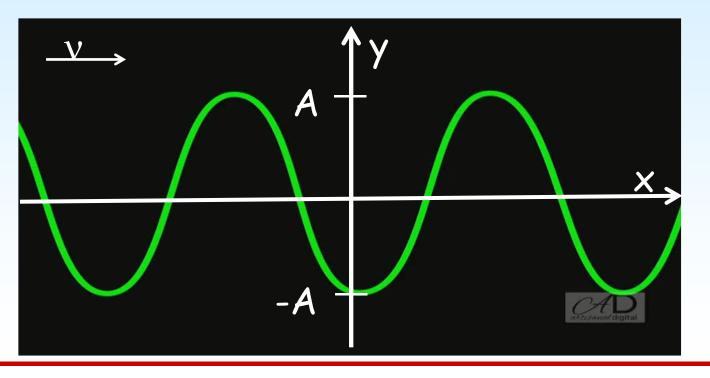
Mechanical waves: Transverse waves

Transverse waves

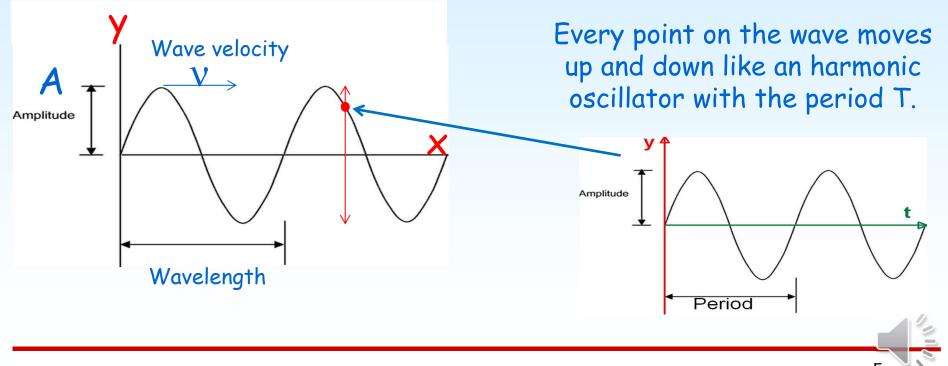
Transverse wave: The medium moves transverse to the wave direction.

https://www.youtube.com/watch?v=FUBGrH-PbsU

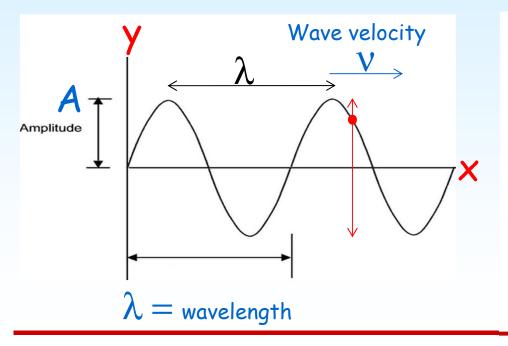
A special transverse wave is the sinusoidal wave:



Transverse sinusoidal waves



Definitions:



A: Amplitude (m)

T: Period (s)

 λ : Wavelength (m)

v: Wave speed $(m/s) = \lambda / T$

f: Frequency (Hz) = 1 / T

ω: Angular frequency (radians/s) = 2 π f

k: Wave number (radians/m) = $2 \pi / \lambda$

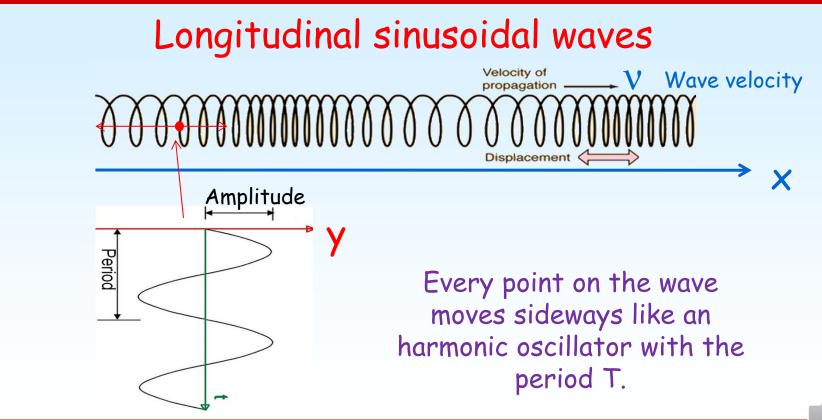
Mechanical waves: Longitudinal waves

Longitudinal waves

Japanese earthquake

Simulation of Japanese earthquake

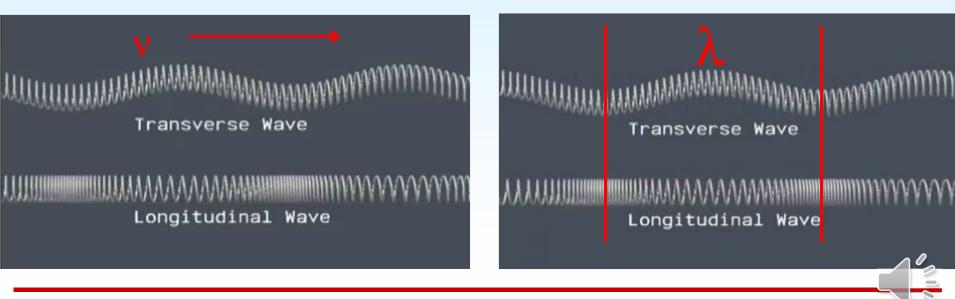
Longitudinal waves: The medium moves in the wave direction.



10

What is the wavelength (λ) for a sinusoidal wave ? What is the wave velocity (v) ?

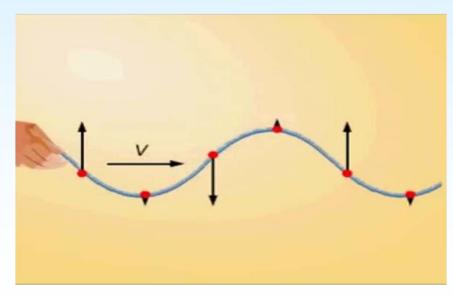
$$v = \lambda / T = \lambda f$$

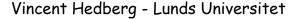


Mechanical waves: The wavefunction

11

The wavefunction

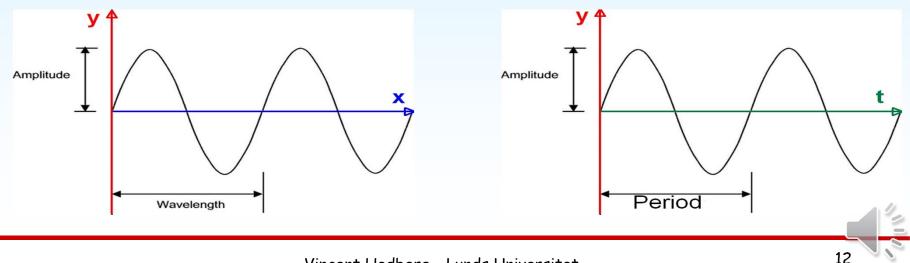




The wavefunction y(x,t): The wave function describes the height of the wave as a function of both distance and time.

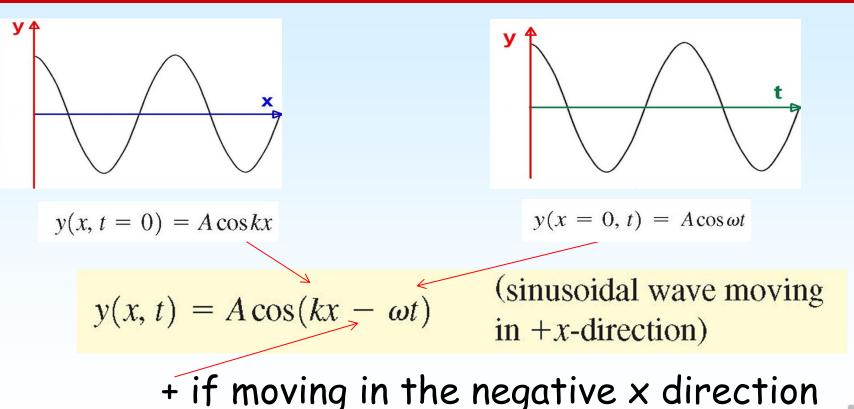
The height of the wave as a function of distance x:

The height of the wave as a function of time t:

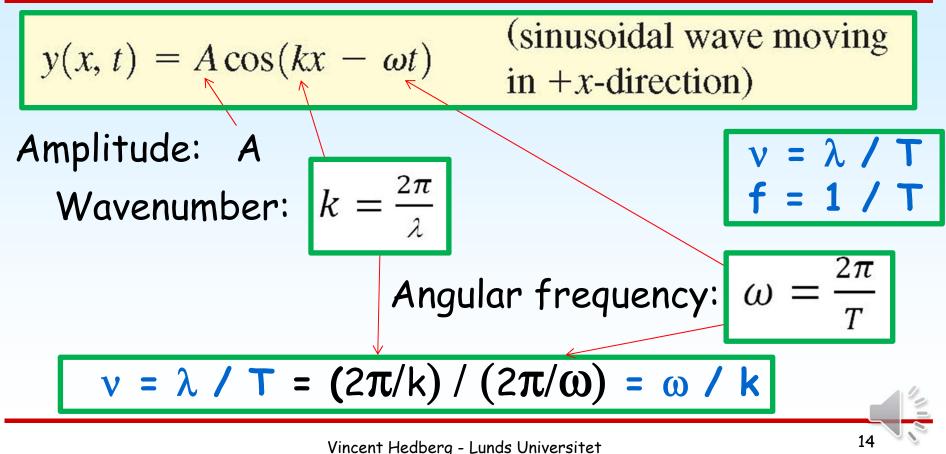


Mechanical waves: The wavefunction

13



i moving in me negative x an ea



15

The wavefunction: The velocity:

The acceleration:

$$y(x, t) = A\cos(kx - \omega t)$$
$$v_y(x, t) = \frac{\partial y(x, t)}{\partial t} = \omega A\sin(kx - \omega t)$$
$$a_y(x, t) = \frac{\partial^2 y(x, t)}{\partial t^2} = -\omega^2 A\cos(kx - \omega t) = -\omega^2 y(x, t)$$

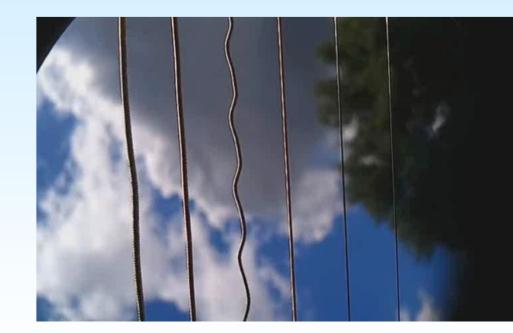
The wave equation:

Wave velocity:

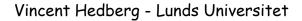
$$\frac{\partial^2 y(x,t)}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y(x,t)}{\partial t^2}$$

$$v = \lambda / T = \omega / k$$

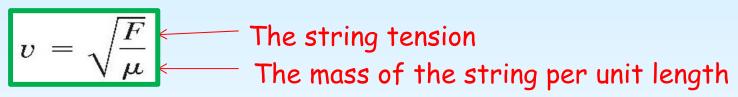
Wave speed and string properties

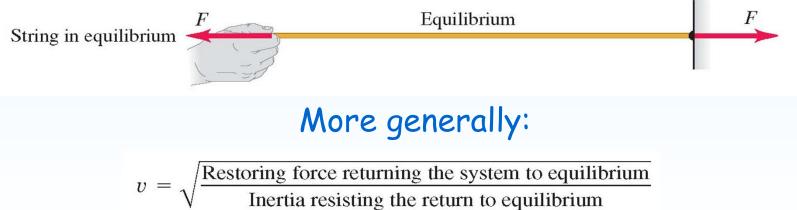


https://www.youtube.com/watch?v=ttgLyWFINJI



The wave speed on a string depends on two things:

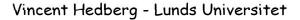




Mechanical waves: Power

Power

How much work is done every second ?



Wave power (P): The instantaneous rate at which energy is transferred along the wave. (P = energy per unit time) Units: W or J/s

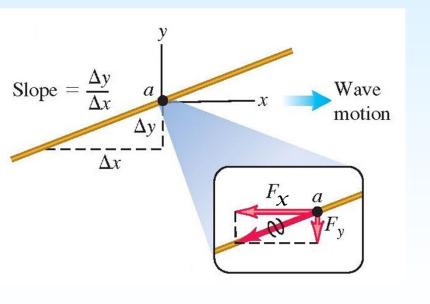
The power in general : $P = \vec{F} \cdot \vec{v}$ (instantaneous rate at which force \vec{F} does work on a particle)

Power along the wave (P): $P(x, t) = F_y(x, t)v_y(x, t)$

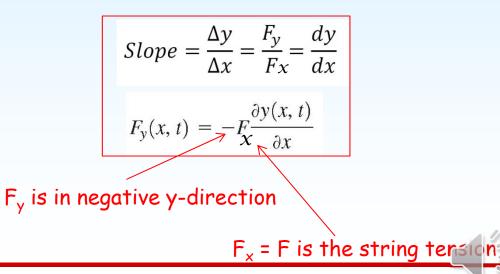
because y is the only direction where the speed of the string is not zero

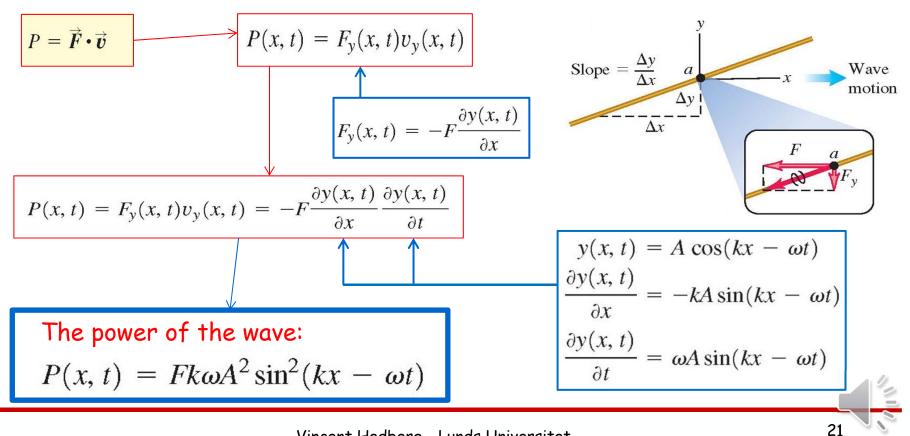
20

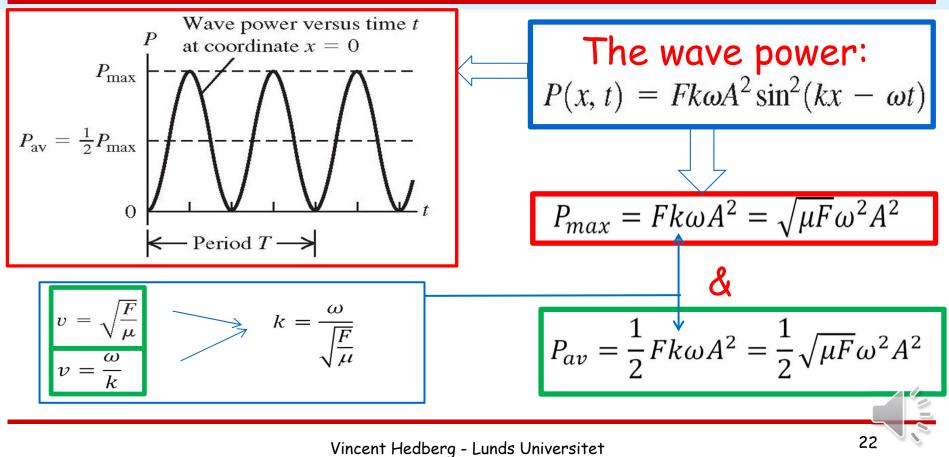
Wave on a string



The ratio of the force in the y-direction to the force in the x-direction is given by the slope of the string which can be calculated by derivation:

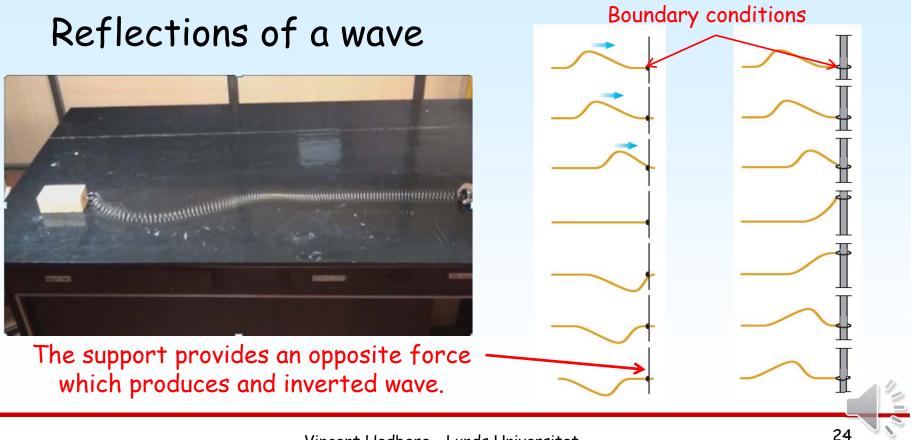






Mechanical waves: Reflections

Reflection of waves



Mechanical waves: Reflections

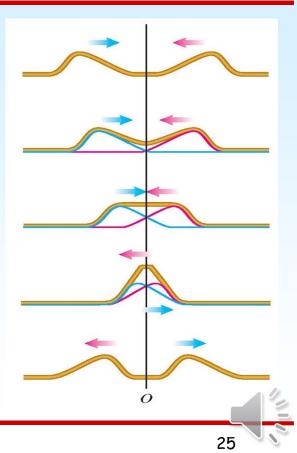
The wavefunction of two waves is typically the sum of the individual wavefunctions.

 $y(x, t) = y_1(x, t) + y_2(x, t)$

This is called the principle of superposition.

This is true if the wave equations for the waves are linear (they contain the function y(x,t) only to the first power).

For example can sinusoidal waves be superimposed like this because their wave equation is linear. $\frac{\partial^2 y(x,t)}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y(x,t)}{\partial t^2}$



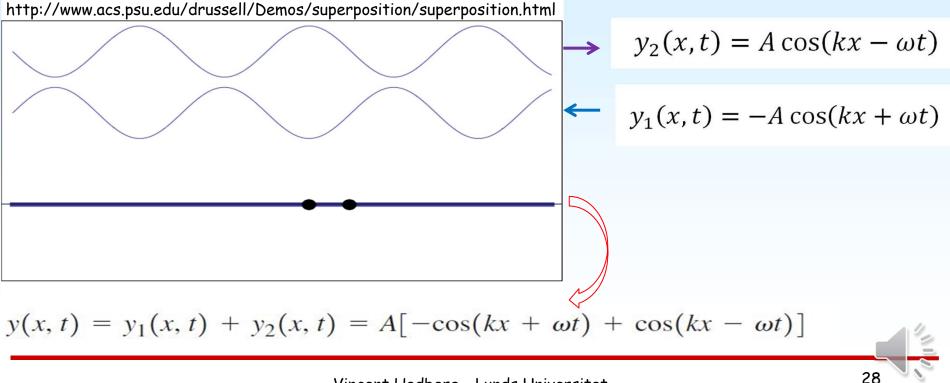
Mechanical waves: Standing waves

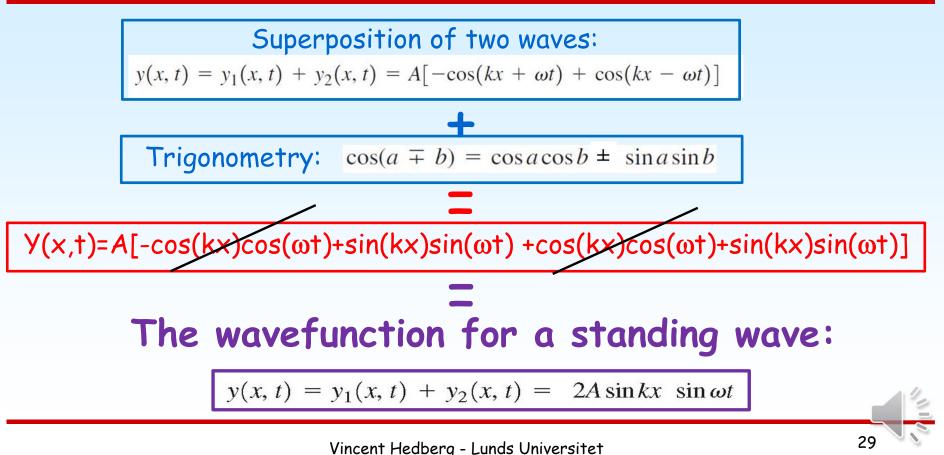
https://www.youtube.com/watch?v=NpEevfOU4Z8

Mechanical waves: Standing waves

https://www.youtube.com/watch?v=-gr7KmTOrx0

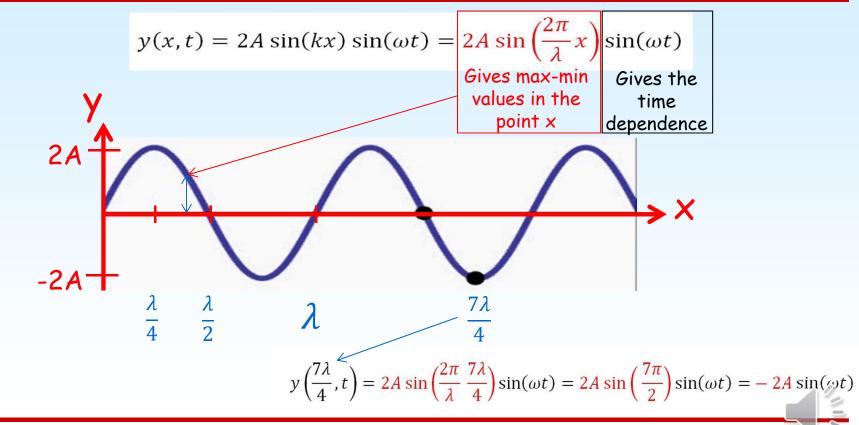
Two waves with the same frequency and wavelength pass each other:





Mechanical waves: Standing waves

30



Mechanical waves: Standing waves

31

Nodes:
$$y(x, t) = y_1(x, t) + y_2(x, t) = 2A \sin kx \sin \omega t$$

The nodes are given by sin(kx) = 0

$kx = 0, \pi, 2\pi, 3\pi, 4\pi,$

$$x = 0, \frac{\pi}{k}, \frac{2\pi}{k}, \frac{3\pi}{k}, \frac{4\pi}{k},$$

$$x = 0, \frac{\lambda}{2}, \frac{2\lambda}{2}, \frac{3\lambda}{2}, \frac{4\lambda}{2}, \text{ since } \mathbf{k} = \frac{2\pi}{\lambda}$$

$$x = 0, \frac{\nu}{2f}, \frac{2\nu}{2f}, \frac{3\nu}{2f}, \frac{4\nu}{2f}, \text{ since } \lambda = \frac{\nu}{f}$$

32

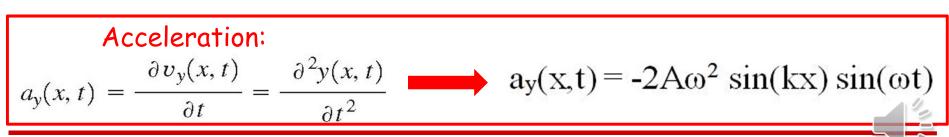
What is the velocity and accelerationen?

Displacement:

 $y(x,t) = 2A \sin(kx) \sin(\omega t)$

Wavefunction

Velocity: $v_y(x,t) = \frac{\partial y(x,t)}{\partial t}$ $v_y(x,t) = 2A\omega \sin(kx) \cos(\omega t)$

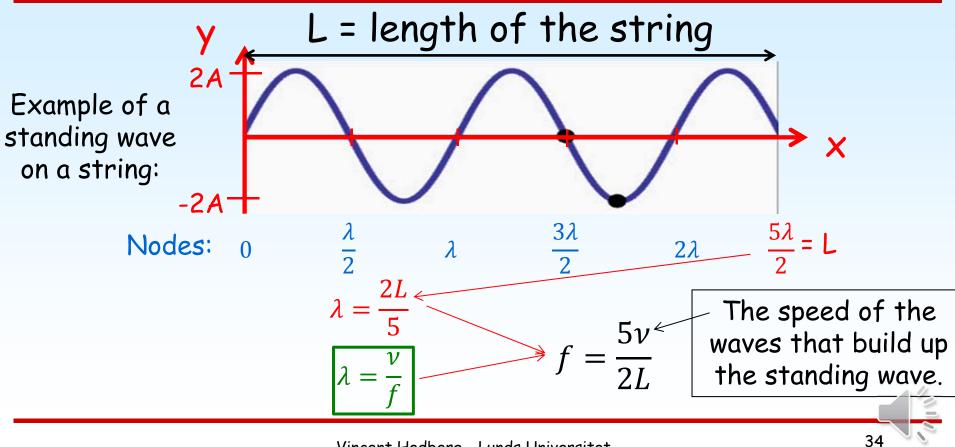


String instruments

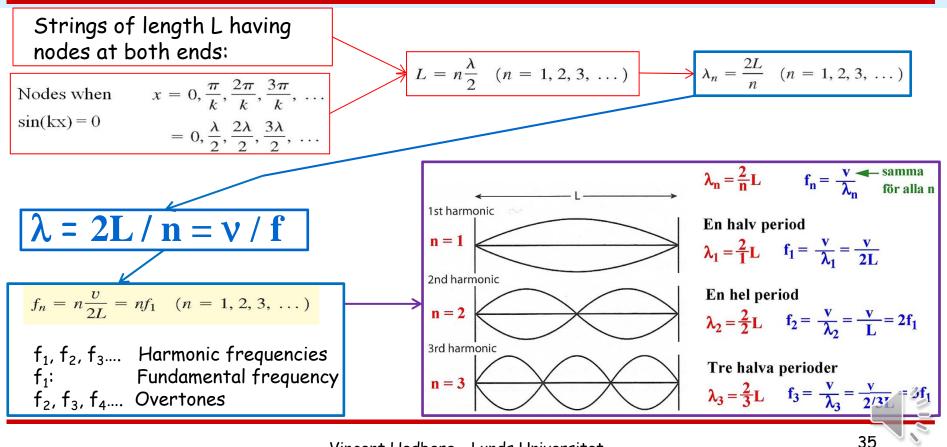
https://www.youtube.com/watch?v=12X-i9YHzmE

Octobasse violin

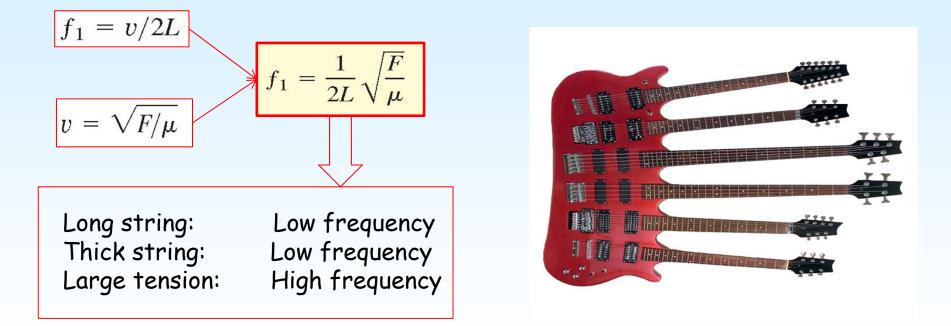
Mechanical waves: String instruments



Mechanical waves: String instruments



36



SUMMARY

Mechanical waves

38

The sinusoidal oscillations on a string are described by the wave equation

$$\frac{\partial^2 y(x,t)}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y(x,t)}{\partial t^2}$$

which has the wavefunction as a solution

Velocity and acceleration are obtained by derivation

$$v_{y}(x,t) = \frac{\partial y(x,t)}{\partial t} = \omega A \sin(kx - \omega t)$$

$$a_{y}(x,t) = \frac{\partial^{2} y(x,t)}{\partial t^{2}} = -\omega^{2} A \cos(kx - \omega t) = -\omega^{2} y(x,t)$$

$$v = \lambda / T = \omega / k \qquad v = \sqrt{\frac{F}{\mu}}$$

Wave velocity

