## A CONTRACTOR OF CONTRACTOR OF

### Wavemechanics and optics













#### Chapter 16 - Sound





## Content



- Part 1. Sound = Pressure waves
- Part 2. Problems
- Part 3. The speed of sound in a liquid
- Part 4. Problems
- □ Part 5. Sound power
- Dert 6. Sound intensity
- Part 7. Problems
- Part 8. The decibel scale
- Part 9. Problems
- Part 10. Doppler effect
- Part 11. Problems
- Part 12. Summary







## Part 1. Sound = Pressure waves



Carreta Treme Treme

A Brazilian loud speaker truck

192 loudspeakers33 amplifiers240 batteries







#### Mechanical longitudinal wave: The medium is moving in the same direction as the wave





#### Sound: Longitudinal waves



Vincent Hedberg - Lunds Universitet

5



#### **Sound & Pressure waves**









#### Given

The wavefunction: 
$$y(x, t) = A\cos(kx - \omega t)$$

#### Goal

#### Derive a function for the pressure !

How

See how a pressure change causes a volume change in a small cylindrical volume element.





#### **Sound & Pressure waves**





#### **Bulk modulus**



The bulk modulus measures a mediums resistance to uniform compression:

$$\mathbf{B} = -\mathbf{V} \frac{\Delta \mathbf{p}}{\Delta \mathbf{V}} \longrightarrow \text{Pressure change}$$

$$\mathbf{V} = \mathbf{V} \frac{\Delta \mathbf{p}}{\Delta \mathbf{V}} \mathbf{V}$$

Unit:  $N/m^2$ 

The change in pressure after a change of volume:  $\Delta p = -B \Delta V/V$   $\int$ Pressure increase:  $\Delta p > 0$  and  $\Delta V < 0$ 





9

#### A sound wave passes a cylinder shaped volume element:



Volume:  $V = S \Delta x$ 

How is this volume changed by a sound wave?

How does the pressure change?





#### **Sound & Pressure waves**



10







11







12













#### Human hearing

Audible frequency range: 20-20 kHz

Loudness: Higher pressure amplitud Larger loudness

Changed frequency

Pitch: Higher frequency

(at the same frequency) Changed loudness (at the same amplitude) Higher pitch

Higher pressure amplitude — Normally higher pitch

**Timbre:** Instruments with the same fundamental frequency may have different content of overtones e.g. different timbre





# Part 2. Problems









A sinusoidal sound wave has a frequency of 1000 Hz and a pressure amplitude of  $3.0 \times 10^{-2}$  Pa.

Air: v = 344 m/s,  $B = 1.42 \times 10^5 \text{ Pa}$ 

What will be the maximum movement of the air due to this sound wave?







## Part 3. The speed of sound in a liquid



#### Sound Navigation And Ranging

www.youtube.com/watch?v=wTcaFYeUR10







#### Given

Pressure change from a volume change:

$$\Delta \mathbf{p} = -\mathbf{B} \cdot \frac{\Delta \mathbf{V}}{\mathbf{V}}$$

Goal

#### Derive a formula for the speed of sound in a liquid !

How

See how a pressure change causes a volume change in a small cylindrical volume element.





#### Derivation of the formula for the sound velocity in a liquid Assume: A piston is pushed into a cylinder with velocity vy and creates a pressure wave.







#### Variables

#### Time = 0:

- p = Pressure in the liquid
- A = Area of the piston
- $F_1$  = Force on the piston
- $\rho$  = Density of the liquid

Time = t:

- $v_y$  = Velocity of piston
- v' = Velocity of wave
- $v_y$ t = Distance the piston has moved
- vt = Distance the wave has moved
- $\Delta p$  = Pressure change
- $F_2$  = Force on the piston



















## The impulse if a piston is pushed into a cylinder with the velocity $v_y$ and sets the volume element V in motion:













| String:            | $v = \sqrt{\frac{F}{\mu}}$  |
|--------------------|-----------------------------|
| Liquids:           | $v = \sqrt{\frac{B}{ ho}}$  |
| Solid<br>material: | $v = \sqrt{\frac{Y}{\rho}}$ |

F: String tension  $\mu$ : Mass per unit length

B: The Bulk modulus  $\rho$ : The density

Y: The Young's module  $\rho \text{:}$  The density

Gas:

$$v = \sqrt{\frac{B}{\rho}}$$

B: The Bulk modulus  $\rho$ : The density

25





# Part 4. Problems









27

#### A human can hear frequencies between 20 and 20000 Hz. What wavelengths does this correspond to ?

Assume that v = 344 m/s

$$v = f \cdot \lambda = \frac{\omega}{k}$$
  
 $\lambda = \frac{\omega}{\lambda} = \frac{344}{20} = 17 \text{ m} \text{ for } f = 20 \text{ Hz}$   
 $\lambda = \frac{344}{2000} = 1.7 \text{ cm} \text{ for } f = 20 \text{ kHz}$ 





A sonar system sends out sound waves at a frequency of 262 Hz.

What will be the speed and wavelength of this sound wave if B =  $2.18 \times 10^9$  Pa ?

What will be the velocity and wavelength of the wave in air if B =  $1.42 \times 10^5$  Pa and the density 1.225 kg/m<sup>3</sup>



$$v = \sqrt{\frac{B}{\rho}} = \sqrt{\frac{2.18 \times 10^9 \text{ Pa}}{1.00 \times 10^3 \text{ kg/m}^3}} = 1480 \text{ m/s}$$

$$\lambda = \frac{v}{f} = \frac{1480 \text{ m/s}}{262 \text{ s}^{-1}} = 5.65 \text{ m}$$

V = 340 m/s in air

28

$$\lambda$$
 = 1.3 m in air





Part 5. The power of sound

The highest sound ever measured:

When the Krakatoa volcano exploded in 1883, the sound was heard in Perth at a distance of 3100 km.

The explosion was equivalent to 10000 atom bombs.







#### General for mechanical waves

Wave power (P): The instantaneous rate at which energy is transferred along the wave. (P = energy per unit of time) Unit: W or J/s

Wave intensity (I): Average power per unit area through a surface perpendicular to the wave direction. (I =power per unit of area).  $I = P_{av} / A_{rea}$ Unit: W/m<sup>2</sup>

The power in general: $P = \vec{F} \cdot \vec{v}$ (instantaneous rate at which<br/>force  $\vec{F}$  does work on a particle)Wave power (P): $P(x, t) = F_y(x, t)v_y(x, t)$ 





31

Wave power (P):
$$P(x, t) = F_y(x, t)v_y(x, t)$$
Pressure function (p):Wavefunction (y): $p(x, t) = BkA \sin(kx - \omega t)$  $y(x, t) = A \cos(kx - \omega t)$ Pressure = Force per unit area $v_y(x, t) = \frac{\partial y(x, t)}{\partial t} = \omega A \sin(kx - \omega t)$ 

Wavepower per unit of area: $P(x,t) = p(x,t)v_y(x,t) = [BkA\sin(kx - \omega t)][\omega A\sin(kx - \omega t)]$ PowerPressureper m² $B\omega kA^2 \sin^2(kx - \omega t)$ 











33



$$2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2} = 2^{2$$





34

#### Compare power for string and sound:

Power general: 
$$P = \vec{F} \cdot \vec{v}$$

(instantaneous rate at which force  $\vec{F}$  does work on a particle)

Wave power - string:  $P(x, t) = Fk\omega A^2 \sin^2(kx - \omega t)$  $P_{max} = Fk\omega A^2 = \sqrt{\mu F}\omega^2 A^2$  $P_{av} = \frac{1}{2} F k \omega A^2 = \frac{1}{2} \sqrt{\mu F} \omega^2 A^2$ 

Wave power - sound:  $P(x,t)/Area = B\omega kA^2 sin^2(kx - \omega t)$  $P_{max}/Area = B\omega kA^2 = \sqrt{\rho B}\omega^2 A^2$  $P_{av}/Area = \frac{1}{2} B\omega kA^2 = \frac{1}{2} \sqrt{\rho B} \omega^2 A^2$ 

Unit:  $N/m^2$ 

Unit: N





#### Part 6. Intensity = average power per unit area



When the Gulf Corvina fish spawn, it sends out audio signals that can reach an intensity level of 177 dB (202 dB =  $10^8$  W/m<sup>2</sup> for an entire shoal).

This is one of the loudest sounds in the animal world and can cause hearing damage to dolphins, seals and sea lions.

![](_page_35_Picture_0.jpeg)

![](_page_35_Picture_2.jpeg)

36

#### Average power of a soundwave $(P_{av})$ : Unit: W or J/s

$$\frac{P_{av}}{Area} = \frac{1}{2}B\omega kA^2 = \frac{1}{2}\sqrt{\rho B}(\omega A)^2 = \frac{1}{2}\rho(\omega A)^2 v$$

Wave intensity (I): Average power per unit area through a surface perpendicular to the wave direction. Unit:  $W/m^2$ 

![](_page_36_Picture_0.jpeg)

![](_page_36_Picture_2.jpeg)

![](_page_36_Figure_3.jpeg)

![](_page_37_Figure_0.jpeg)

![](_page_37_Picture_2.jpeg)

Wave intensity (I): The speed at which the wave transports energy through a surface perpendicular to the direction of the wave (I = Average power per area unit = energy per time and area unit). Units:  $W/m^2 = J/s/m^2$ 

![](_page_37_Figure_4.jpeg)

![](_page_38_Picture_0.jpeg)

![](_page_38_Picture_2.jpeg)

# Part 7. Problems

![](_page_38_Picture_4.jpeg)

![](_page_38_Picture_5.jpeg)

![](_page_39_Figure_0.jpeg)

![](_page_39_Picture_2.jpeg)

A siren sends out sound waves uniformly in all directions. The sound intensity is  $0.250 \text{ W/m}^2$  at a distance of 15.0 m.

At what distance is the intensity 0.010  $W/m^2$ ?

![](_page_39_Figure_5.jpeg)

![](_page_40_Figure_0.jpeg)

![](_page_40_Picture_2.jpeg)

Calculate the sound intensity if the pressure amplitude is  $3.0 \times 10^{-2}$  Pa, the air density is 1.20 kg/m<sup>3</sup> and the speed of sound is 344 m/s!

![](_page_40_Figure_4.jpeg)

![](_page_41_Figure_0.jpeg)

![](_page_41_Picture_2.jpeg)

What is the pressure amplitude of a sound wave with f = 20 Hz if it has the same intensity as a sound wave with f = 1000 Hz, I =  $1.1 \times 10^{-6}$  W/m<sup>2</sup> and  $p_{max}$  =  $3.0 \times 10^{-2}$  Pa. Assume that  $\rho$  = 1.20 kg/m<sup>3</sup> and v = 344 m/s

Wave 1: f = 1000 Hz,  $p_{max} = 3.0 \times 10^{-2} \text{ Pa}$ ,  $\rho = 1.20 \text{ kg/m}^3$ , v = 344 m/s,  $I = 1.1 \times 10^{-6} \text{ W/m}^2$ Wave 2: f = 20 Hz,  $p_{max} = ????????$ ,  $\rho = 1.20 \text{ kg/m}^3$ , v = 344 m/s,  $I = 1.1 \times 10^{-6} \text{ W/m}^2$ 

$$I = \frac{p_{max}^{2}}{2\sqrt{\rho B}}$$

Since  $\rho B$  = constant and  $I_1 = I_2$  then follows that  $p_{max2} = p_{max1} = 3.0 \times 10^{-2} Pa$ 

Wave 2: f = 20 Hz,  $p_{max} = 3.0 \times 10^{-2} \text{ Pa}$ ,  $\rho = 1.20 \text{ kg/m}^3$ , v = 344 m/s,  $I = 1.1 \times 10^{-6} \text{ W/m}^2$ 

![](_page_42_Picture_0.jpeg)

![](_page_42_Picture_2.jpeg)

What is the displacement amplitude of Wave 2 in the previous problem ? Wave 2: f = 20 Hz,  $p_{max} = 3.0 \times 10^{-2} \text{ Pa}$ ,  $\rho = 1.20 \text{ kg/m}^3$ , v = 344 m/s,  $I = 1.1 \times 10^{-6} \text{ W/m}^2$ 

$$I = \frac{1}{2} \sqrt{\rho B} \omega^2 A^2$$

$$I = \frac{p_{max}^2}{2\sqrt{\rho B}} \sqrt{\rho B} = p_{max}^2/2I$$

$$I = (p_{max}^2/2I) \omega^2 A^2/2$$

 $I = (p_{max}^2/2I) \omega^2 A^2/2 \qquad \square \qquad I^2 = p_{max}^2 \omega^2 A^2/4 \qquad \square \qquad I = p_{max} \omega A/2$ 

A = 2I /  $p_{max}\omega$  = 2 × 1.1 × 10<sup>-6</sup> / (3.0 × 10<sup>-2</sup> × 2 $\pi$  × 20) = 0.58  $\mu$ m

![](_page_43_Picture_0.jpeg)

![](_page_43_Picture_2.jpeg)

## At a concert you want a sound intensity that is $1 \text{ W/m}^2$ at a distance of 20 m from the speakers. What output power do the speakers need?

Intensity is the average power per unit area:

The intensity through a sphere with radius r:

The intensity through a hemisphere with radius r:

$$I = P_{av} / A_{rea}$$
$$I = \frac{P}{4\pi r^2}$$
$$I = \frac{P}{2\pi r^2}$$

$$P = 2 \pi r^2 I = 2.5 kW$$

![](_page_44_Picture_0.jpeg)

#### Sound: Decibel

![](_page_44_Picture_2.jpeg)

# Part 8. The decibel scale

Pain threshold: 120 dB = 1 W/m<sup>2</sup>

Gulf Corvina: 200 dB = 10<sup>8</sup> W/m<sup>2</sup>

Saturn V rocket: 220 dB = 10<sup>10</sup> W/m<sup>2</sup>

Krakatoa: 310 dB = 10<sup>19</sup> W/m<sup>2</sup>

![](_page_44_Picture_8.jpeg)

![](_page_45_Picture_0.jpeg)

![](_page_45_Picture_2.jpeg)

#### Intensity level ( $\beta$ ) with decibel (dB) as the unit:

$$\beta = 10 \log \frac{I}{I_0} \iff I = I_0 \cdot 10^{\beta/10}$$

 $I_0 = 10^{-12} \text{ W/m}^2$  is a reference level.  $I_0 = \text{approximately the limit of human hearing.}$ 

 $\beta = 0 dB$  when  $I = I_0$  $\beta = 120 dB$  when  $I = 1 W/m^2$ 

![](_page_45_Picture_7.jpeg)

![](_page_46_Picture_0.jpeg)

#### Sound: Decibel

![](_page_46_Picture_2.jpeg)

| Source or Description of Sound                                                                                                                                               | Sound Intensity Level,<br>$\beta$ (dB)         | Intensity,<br>I (W/m <sup>2</sup> )                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Military jet aircraft 30 m away<br>Threshold of pain<br>Riveter<br>Elevated train<br>Busy street traffic<br>Ordinary conversation<br>Quiet automobile<br>Ouiet radio in home | 140<br>120<br>95<br>90<br>70<br>65<br>50<br>40 | $ \begin{array}{c} 10^{2} \\ 1 \\ 3.2 \times 10^{-3} \\ 10^{-3} \\ 10^{-5} \\ 3.2 \times 10^{-6} \\ 10^{-7} \\ 10^{-8} \end{array} $ |
| Average whisper<br>Rustle of leaves<br>Threshold of hearing at 1000 Hz<br>Saturn V rocket:                                                                                   | 20<br>10<br>0<br><b>220</b>                    | $10^{-10} \\ 10^{-11} \\ 10^{-12} $ $10^{10}$                                                                                        |

A Saturn V rocket produces a 100 million times higher intensity than a jet aircraft !

![](_page_47_Picture_0.jpeg)

![](_page_47_Picture_2.jpeg)

# Part 9. Problems

![](_page_47_Picture_4.jpeg)

![](_page_47_Picture_5.jpeg)

![](_page_48_Picture_0.jpeg)

![](_page_48_Picture_2.jpeg)

After 10 minutes at 120 dB, the human hearing threshold is temporarily changed from 0 dB to 28 dB if f = 1000 Hz.

After 10 years of 92 dB, the limit for human hearing is permanently changed from 0 dB to 28 dB if f = 1000 Hz.

What sound intensity corresponds to 28 dB and 92 dB?

$$\beta = 10 \log \frac{I}{I_0}$$

$$I = I_0 \cdot 10^{\beta/10} \text{ with } I_0 = 10^{-12} \text{ W/m}^2$$

$$I_{28 \text{ dB}} = (10^{-12} \text{ W/m}^2) 10^{2.8} = 6.3 \times 10^{-10} \text{ W/m}^2$$

$$I_{92 \text{ dB}} = (10^{-12} \text{ W/m}^2) 10^{9.2} = 1.6 \times 10^{-3} \text{ W/m}^2$$

![](_page_49_Figure_0.jpeg)

![](_page_49_Picture_2.jpeg)

A bird sings with constant power. How many decibels does the intensity level go down if the listener doubles the distance to the bird?

![](_page_49_Figure_4.jpeg)

![](_page_49_Figure_5.jpeg)

![](_page_50_Picture_0.jpeg)

![](_page_50_Picture_2.jpeg)

Part 10. Doppler effect

![](_page_50_Figure_4.jpeg)

https://www.youtube.com/watch?v=-Zu5SGllmwc

51

![](_page_51_Picture_0.jpeg)

#### Sound: The Doppler effect

![](_page_51_Picture_2.jpeg)

![](_page_51_Figure_3.jpeg)

![](_page_52_Picture_0.jpeg)

![](_page_52_Picture_2.jpeg)

![](_page_52_Figure_3.jpeg)

 $\boldsymbol{v}$  does not change because of  $v_s$  since it only depends on the medium.

The time it takes for the listener to detect wave 2 is given by  $T_L$  = distance/speed:

 $T_L = \frac{\vartheta T_s - \vartheta_s T_s}{\vartheta}$ 

 $T_L$  is also the time between the two waves (the period).

$$f_{L} = \frac{1}{T_{L}} = \frac{\vartheta}{\vartheta - \vartheta_{s}} f_{s}$$
$$\lambda_{L} = \frac{\vartheta}{f_{L}} = \frac{\vartheta - \vartheta_{s}}{f_{s}}$$

53

![](_page_53_Figure_0.jpeg)

#### Sound: The Doppler effect

![](_page_53_Picture_2.jpeg)

54

![](_page_53_Figure_3.jpeg)

![](_page_53_Figure_4.jpeg)

![](_page_54_Picture_0.jpeg)

![](_page_54_Picture_2.jpeg)

![](_page_54_Figure_3.jpeg)

![](_page_55_Picture_0.jpeg)

![](_page_55_Picture_2.jpeg)

56

Electromagnetic waves such as light also have a Doppler effect.

It can be calculated with the theory of relativity:

$$f_{\mathbf{O}} = \sqrt{\frac{c - v}{c + v}} f_{\mathrm{S}}$$

 $f_s$  = frequency of the light source

- $f_0$  = frequency of the light detected
- c = the speed of light
- v = The relative speed of the light source with respect to the observer

v is positive if the observer moves away from the source. v is negative if the observer moves towards the light source.

![](_page_56_Picture_0.jpeg)

![](_page_56_Picture_2.jpeg)

# Part 11. Problems

![](_page_56_Picture_4.jpeg)

![](_page_56_Picture_5.jpeg)

![](_page_57_Figure_0.jpeg)

![](_page_57_Picture_2.jpeg)

![](_page_57_Figure_3.jpeg)

#### What frequency does the listener hear?

![](_page_57_Figure_5.jpeg)

![](_page_58_Picture_0.jpeg)

![](_page_58_Picture_2.jpeg)

59

A police car with a siren of f = 300 Hz drives towards a house at the speed of 30 m/s. What frequency does a listener hear in the house?

![](_page_58_Figure_4.jpeg)

![](_page_58_Figure_5.jpeg)

$$f_{\rm W} = \frac{v}{v + v_{\rm S}} f_{\rm S} = \frac{340 \text{ m/s}}{340 \text{ m/s} + (-30 \text{ m/s})} (300 \text{ Hz}) = 329 \text{ Hz}$$

![](_page_59_Figure_0.jpeg)

![](_page_59_Picture_2.jpeg)

A police car with a siren of f = 300 Hz drives towards a house at the speed of 30 m/s. What frequency does a listener hear in the police car if the sound is reflected back to it?

![](_page_59_Picture_4.jpeg)

The house becomes a sound source with the frequency 329 Hz as calculated earlier:

![](_page_59_Figure_6.jpeg)

![](_page_60_Picture_0.jpeg)

![](_page_60_Picture_2.jpeg)

# Part 12. Summary

![](_page_60_Picture_4.jpeg)

![](_page_61_Picture_0.jpeg)

![](_page_61_Picture_2.jpeg)

62

Wavefunction:

$$y(x,t) = A\cos(kx - \omega t)$$

Pressure function:

$$p(x, t) = BkA\sin(kx - \omega t)$$
  $p_{max} = BkA$ 

Speed of sound:

$$v = f \cdot \lambda = \frac{\omega}{k} = \sqrt{\frac{B}{\rho}}$$

Power per unit area:  $P(x,t) = B\omega kA^2 \sin^2(kx - \omega t)$ 

![](_page_62_Picture_0.jpeg)

#### Sound: Summary

![](_page_62_Picture_2.jpeg)

63

Intensity (average power per unit area)

The inverse-square law:

$$I = P_{av} / A_{rea} = \frac{1}{2} B \omega k A^2 = \frac{1}{2} \sqrt{\rho B} \omega^2 A^2 = \frac{p_{max}^2}{2\sqrt{\rho B}}$$

$$\frac{I_1}{I_2} = \frac{r_2^2}{r_1^2}$$

(inverse-square law for intensity)

Intensity level (decibel):

$$\beta = 10 \log \frac{I}{I_0}$$

Doppler effect:

$$f_L = \frac{v + v_L}{v + v_S} f_S$$