

Vågrörelselära och optik

Kapitel 36 - Diffraktion

Vincent Hedberg - Lunds Universitet

Vågrörelselära och optik

1

Kurslitteratur: University Physics by Young & Friedman

Harmonisk oscillator: Mekaniska vågor: Ljud och hörande: Elektromagnetiska vågor: Ljusets natur: Stråloptik: Interferens: Diffraktion: Kapitel 14.1 - 14.4 Kapitel 15.1 - 15.8 Kapitel 16.1 - 16.9 Kapitel 32.1 & 32.3 & 32.4 Kapitel 33.1 - 33.4 & 33.7 Kapitel 34.1 - 34.8 Kapitel 35.1 - 35.5 Kapitel 36.1 - 36.5 & 36.7

Tid	Må 02-	nov	Ti .	03-nov	On		04-nov	То		05-nov	Fr	06-nov
08-10	Kvantfysik (A)	Våglära (A)	a/optik	ip 14	Kvantfysik (A)			Våglära/op (A)	tik		Kvantfysik (A)	
10-12	Intro period 2 (A) Informationssökning (A)	Kvantfy (A)	rsik		Váglära/opt	^{ik} 4+15	ÄFYA11 (L218)	Kvantfysik (A)			(A)	ap 15
13-15	Utvärdering (A) 12-13	Övning (L218-1	ar Optik&Vág 9)		SI gp <mark>6</mark> -10 (L219)		ÄFYA11 (L218)	SI gp11-15 (L219)			Övningar Optik8 (L218-19)	\$Vág
15-17	3	-]		8]	_		
Tid	Må 09-	nov	ri	10-nov	On		11-nov	То		12-nov	Fr	13-nov
08-10	Kvantfysik (A)	Väglära (A)	a/optik	ip 16	Våglära/opt (A)	^{ik} kap 1	6+32	Kvantfysik (A)			Kvantfysik (A)	
10-12	Vaglāra/optik ĀFYA	(A) Kvantfy (A)	sik		Kvantfysik (A)			Väglära/opt (A)	^{iik} kap 3	2+33	Váglära/optik (A)	kap 33
13-15	Si gp1-5 ÄFYA (L219) (L218	11 Övning 3) (L218-1	ar Optik&Vág 9)		ÄFYA11 (1218)	SI gp6-10 (L219)		SI gp1-5 (L218)	SI gp11-15 (L219)		Övningar Optik8 (L218-19)	\$Vág
15-17									10 N	85		1
Tid	Må 16-	nov	ri 🛛	17-nov	On		18-nov	То		19-nov	Fr	20-nov
08-10	Kvantfysik (A)	Váglára (A)	a/optik	ip 34 🛛	Kvantfysik (A)			Väglära/opt (A)	<mark>ap 35</mark>	ÄFYA11	Våglära/optik (A)	kap 36
10-12	Váglára/optik kap S (A)	Kvantfy (A)	rsik		Våglära/opt (A)	ik kap 3	34+35	Våglära/opl (A)		(L218)	Kvantfysik (A)	
13-15	SI gp6-10 (L219)	Övning (L218-1	ar Optik&Vág 9)		Seminar.ge	en.gång (A) Si gp11-15	12-13	Labbintrodu 02-03, K1-	uktion (A) -K3		Övningar Optik8 (L218-19)	\$Vág
15-17					(L218) 13-15	(L219) 13-15						

Vincent Hedberg - Lunds Universitet

3

Diffraction

What is diffraction ?

9

Huygen's principle

Each point in a wavefront is regarded as a new source of secondary wavelets.

All the combined circles (wavelets) from all the points add up to create the new wavefronts.

Interference from many points in a slit

Vincent Hedberg - Lunds Universitet

You pass 633-nm laser light through a narrow slit and observe the diffraction pattern on a screen 6.0 m away. The distance on the screen between the centers of the first minima on either side of the central bright fringe is 32 mm How wide is the slit?

Vincent Hedberg - Lunds Universitet

$I = I_0 \begin{bmatrix} \beta/2 \end{bmatrix}$	interference: Intensity is minimum	interference: Intensity is maximum
$I = 0.0083I_0$ $I = 0.0165I_0$ $I = 0.0472I_0$ $m = 3$ $\beta = 6\pi$ $m = 2$ $\beta = 4\pi$ $m = 1$ $\beta = 2\pi$ O $\beta = 0$ $m = -1$ $\beta = -2\pi$ $m = -2$ $\beta = -4\pi$ $m = -3$ $\beta = -6\pi$	$0 = I_0 \left[\frac{\sin(\beta/2)}{\beta/2} \right]^2$ $0 = \sin^2(\beta/2)$ $0 = \sin(\beta/2)$ $= 0, 2\pi, 4\pi, 6\pi = \pm 2\pi \text{ m}$ This gives again: $y_m = x \frac{m\lambda}{a}$	$\frac{dI}{d\beta} = 0$ Gives maximum (and minimum) But the resulting equation has no analytical solution. The peaks are close but not exactly at $\beta = 3\pi, 5\pi, 7\pi$

Vincent Hedberg - Lunds Universitet

Diffraction $a = \lambda$ $a = 5\lambda$ $a = 8\lambda$ 1 I_0 I_0 $\frac{1}{20^{\circ}} \theta$ $\frac{1}{20^{\circ}} \theta$ 20° θ 10° -20° -20° -20° 10° 0° 10° -10° -10° 0° -10° 0 $y_m = x \frac{m\lambda}{a}$

If the width of the slit is equal or smaller than λ then only one broad maximum is observed.

A broader slit makes a narrower centre peak.

Vincent Hedberg - Lunds Universitet

(a) The intensity at the center of a single-slit diffraction pattern is I_0 . What is the intensity at a point in the pattern where there is a 66-radian phase difference between wavelets from the two edges of the slit? (b) If this point is 7.0° away from the central maximum, how many wavelengths wide is the slit?

$$I = I_0 \left[\frac{\sin(\beta/2)}{\beta/2} \right]^2 \qquad \beta = 66 \text{ rad} \qquad I = I_0 \left[\frac{\sin(33 \text{ rad})}{33 \text{ rad}} \right]^2 = (9.2 \times 10^{-4})I_0$$
$$\beta = \frac{2\pi}{\lambda} a \sin \theta \qquad \theta = 7.0^\circ \qquad \frac{a}{\lambda} = \frac{\beta}{2\pi \sin \theta} = \frac{66 \text{ rad}}{(2\pi \text{ rad}) \sin 7.0^\circ} = 86$$

37

Multiple slits

Light incident on a grating is dispursed into a spectrum. The angles of deviations of the maxima are measured to calculate the wave length.

The ESO Very Large Telescope (VLT) in Chile

The XSHOOTER spectrometer in the VLT

ESO: European Southern Observatory https://www.eso.org/public/

Vincent Hedberg - Lunds Universitet

Chromatic resolving power: The minimum wavelength difference ($\Delta\lambda$) that can be distinguished by a spectrograph.

$$R = \frac{\lambda}{\Delta \lambda} \qquad \text{(chromatic resolving power)}$$
$$R = \frac{\lambda}{\Delta \lambda} = Nm$$

R is higher for many slits and higher orders !

Vincent Hedberg - Lunds Universitet

Rayleigh's criterion:

Two point objects can be resolved by an optical system if their angular separation is larger than θ_1 where $\frac{\sin \theta_1}{\sin \theta_1}$

 $\sin\theta_1 = 1.22 \frac{\lambda}{D}$

The limit for two objects to be resolved is when the center of one diffraction pattern is in the first minimum of the other.

Vincent Hedberg - Lunds Universitet

The End