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Vågrörelselära och optik

Kapitel 14 – Harmonisk oscillator
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Experiment to find a mathematical 
description of harmonic oscillation

Harmonic oscillation: Experiment
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Harmonic oscillation: Experiment

Conclusion: Harmonic oscillation can be described by the function:     
x = A sin(Bt + C)   

where t is time and A, B and C are constants describing the motion.
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Harmonic oscillation: Function

x

x = A sin(Bt + C)
or

x = A cos(Bt + C – π/2)

x : Vertical displacement. Unit: meters

t : Time. Unit: seconds

A : Amplitude (maximum movement). Unit: meters

B = ω : Angular frequency (number of oscillations per second times 2π).
Unit: Radians per second

C = φ : Phase angle that determines position at time = 0. Unit: radians
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Harmonic oscillation: f and T

x
x = A sin(ωt + φ’)

or
x = A cos(ωt + φ)

T: Period = The time it takes for the weight    
to go up and down.  Unit: seconds

f: Frequency = The number of periods per 
second.  Unit: 1/Seconds

f = 1 / T                 ω = 2πf

x

t
Formelsamling
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Harmonic oscillation: Phase angle

X = A sin(ωt)  
X = A cos(ωt - π/2)

X = A cos(ωt) 
X = A sin(ωt + π/2)

X = A cos(ωt + π) 
X = A sin(ωt - π/2)

x
x

x

t t t

The phase angle (φ) determines the 
position  at time = 0 since then

x = Asin(φ’)   or   x = Acos(φ)
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We now have a mathematical description of the 
displacement.

What is the velocity and acceleration ?

Harmonic oscillation: 
velocity & acceleration
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Harmonic oscillation: 
velocity & acceleration
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Harmonic oscillation: Summary
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Harmonic oscillation: The spring

Properties of a spring

Hookes law & Forces 
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Harmonic oscillation: The spring

Formelsamling
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Gravity will 
stretch the 
spring to a 

new eqilibrium 
position.

This is not the 
case when the 

spring is 
horizonthal.

However, the oscillations will be the same.

Harmonic oscillation: The spring
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Harmonic oscillation: Forces
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Harmonic oscillation: Forces

x = 0     Ftotal = 0    ax = 0

x > 0     Ftotal < 0    ax < 0

x < 0     Ftotal > 0    ax > 0
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Harmonic oscillation: Forces
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Harmonic oscillation: Forces

ax =  -ω2 x
Old formulas:

New formula:

Combine: -ω2 = -k/m The frequency 
depends on the 

spring constant and 
the massFormelsamling
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Harmonic oscillation: Forces

An alternative way to look at it:

This is a differential equation 
with the following solution:
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Gravity will 
stretch the 
spring to a 

new eqilibrium 
position.

This is not the 
case when the 

spring is 
horizonthal.

Harmonic oscillation: Forces
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Harmonic oscillation: Forces

The mass hangs in the spring without oscillations:
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Harmonic oscillation: Forces

The mass hangs
in the spring
and oscillates:
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Harmonic oscillation: Forces

Newton’s 
second law:

This is a differential equation 
with the following solution:

Spring at rest: 
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Harmonic oscillation: Frequency

Note: f and T depends only on k and m but not on the 
amplitude !

km A
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Harmonic oscillation: 
Summary Forces

The differential equation describing the motion:

Formelsamling
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Harmonic oscillation: Energy

Energy in harmonic oscillation
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Harmonic oscillation: Energy

The total 
mechanical energy is 

constant

Ep

Ek

Et
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Harmonic oscillation: Energy

Ep

Ek

Et
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Vågrörelselära och optik

Kapitel 15 – Mekaniska vågor
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Mechanical waves:
Transverse waves

Transverse waves
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Transverse wave: The medium moves 
transverse to the wave direction.

Mechanical waves:
Transverse waves
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Mechanical waves:
Transverse waves

A sinusoidal transverse wave is when the waves have a 
periodic sinus shape.
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Transversal sinusoidal wave:

Every point on the wave 
moves up and down like an 

harmonic oscillator with the 
period T.

νy

x

Mechanical waves:
Transverse waves
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ν

Mechanical waves:
Transverse waves

y

x

Definitions:
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Longitudinal waves

Mechanical waves:
Longitudinal waves

Vincent Hedberg - Lunds Universitet 34

Longitudinal wave: The medium moves in the 
wave direction.

Mechanical waves:
Longitudinal waves
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Mechanical waves

Longitudinal sinusoidal wave

Every point on the wave 
moves sideways like an 

harmonic oscillator with the 
period T.

ν

x

y
Amplitude
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λ

What is the wavelength (λ) for a sinusoidal wave ?

What is the wave speed (ν) ?

Mechanical waves:
Longitudinal waves

ν

ν = λ / T
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The wavefunction

Mechanical waves:
The wavefunction
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The height of the wave as a 
function of distance x

The height of the wave as a 
function of time t

Wavefunction y(x,t):

Function that describs the height of the wave as a function of 
time and distance

Mechanical waves:
The wavefunction
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+ if moving in the –x direction

Mechanical waves:
The wavefunction
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Mechanical waves:
The wavefunction

Wavenumber:

Angular frequency:

Amplitude:    A

ν = λ / T
f = 1 / T

ν = λ / T = (2π/k) / (2π/ω) = ω / k

Formelsamling
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The wavefunction:

Velocity and acceleration up and down:

Mechanical waves: Summary

The wave equation:

ν = λ / T = (2π/k) / (2π/ω) = ω / k

Formelsamling

Vincent Hedberg - Lunds Universitet 42

Wave speed and 
the string 

characteristics

Mechanical waves: Wave speed
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Mechanical waves: Wave speed

Force (or string trension)

String mass per unit length

The wave speed in a string depends on two things:

More generally:
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Reflections

Mechanical waves: Reflections
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Reflections of a wave

The support provides an opposite force 
which produces and inverted wave.

Boundary conditions

Mechanical waves: Reflections
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The wavefunction of two waves is typically the 
sum of the individual wavefunctions.

This is called the principle of superposition.

This is true if the wave equations for the waves 
are linear (they contain the function y(x,t) only 
to the first power).

For example can sinusoidal waves be 
superimposed like this because their wave 
equation

is linear.

Mechanical waves: Reflections
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Standing waves

Mechanical waves:
Standing waves
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Mechanical waves:
Standing waves
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Different times

Mechanical waves:
Standing waves
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Mechanical waves:
Standing waves

Wavefunction from superposition of two waves:

Trigonometrical relationship:

Nodes are given by sin(kx) = 0

Wavefunction:
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Mechanical waves:
Standing waves

Wavefunction:

Velocity:

Acceleration:
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Stringed 
instrument

Mechanical waves:
Stringed instrument
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Instrument with strings of 
length L has nodes at both 
ends.

f1, f2, f3….  Harmonic frequencies
f1: Fundamental frequency
f2, f3, f4….  Overtones

Mechanical waves:
Stringed instrument

λ = ν / f
Formelsamling
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Long string: Low frequency
Thick string: Low frequency
Large tension: High frequency

A stringed instrument does not produce only harmonic frequencies 
but a superposition of many normal modes.

Mechanical waves:
Stringed instrument

Formelsamling

Vincent Hedberg - Lunds Universitet 55Vincent Hedberg - Lunds Universitet 55

Vågrörelselära och optik

Kapitel 16 - Ljud
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Sound as pressure 
waves

Sound & Pressure
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Longitudinal sinusoidal wave

x
y

Amplitude

Sound & Pressure

Formelsamling
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Piston moving
in and out:

Air molecule 
movement:

Pressure:

x

x
p

y

Sound & Pressure
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Sound & Pressure

Bulk modulus

Δp = -B ΔV/V

The change in pressure 
after a change of volume:

Pressure increase: Δp > 0  and ΔV < 0
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x

xp

y

Sound & Pressure

Δp = -B ΔV/V
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Sound - velocity

The velocity of 
sound waves

Vincent Hedberg - Lunds Universitet 62

General:

String:

Liquid:

Solid:

Gas:

F: String tension
μ: Mass per unit length

B: Bulk modulus
ρ: Density

Y: Young’s module
ρ: Density

B: Bulk modulus
ρ: Density

Sound - velocity

Formelsamling
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Power of 
mechanical waves 

on strings

Mechanical waves: 
Power & Intensity

Vincent Hedberg - Lunds Universitet 64

The power in general:

Wave power (P):                                          

y is the only direction where the velocity is not zero

The instantaneous rate at which energy is transfered along the wave.

Unit: W or J/s

Mechanical waves: Power
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y

x

y = x2

y = 4x - 4

The derivative gives the 
slope of the tangent.

The ratio of the force in 
the y-direction to the 
force in the x-direction is 
the slope of the string:

Mechanical waves: Power
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The power in general:

Wave power (P): 

The instantaneous rate at which energy is transfered along the wave.

Unit: W or J/s

Mechanical waves: Power
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The wave power:

Mechanical waves: Power
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The wave power:

Mechanical waves: Power

Formelsamling
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The power of sound

Sound – power  & intensity
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The wave power:

The pressure function:

Pressure is equal to force per 
unit area

The wave power
per unit area:

The wave function:

Sound – power 
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The wave power:

ν = ω/k
k = ω /

Sound – power 
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Power in general:

Wave power - string: Wave power - sound:

Sound – power 
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Intensity of sound

Sound - Intensity 
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Sound - Intensity 

The power in general:

Wave power (P): 
The instantaneous rate at which energy is transfered along the wave.

Unit: W or J/s

Wave intensity (I):
Average power per unit area through a surface perpendicular to the wave 
direction.

Unit: W/m2

Formelsamling
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Sound - Intensity 

The pressure function:                           

The pressure amplitude:

The intensity is proportional to the 
square of the pressure amplitude
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Wave intensity (I): The rate at which energy is transported by a wave through 
a surface perpendicular to the wave direction per unit surface area (average 
power per unit area). Unit: W/m2

The intensity through 
a sphere with radius r1

If there is no loss of 
power:

Mechanical waves: 
Power & Intensity
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Sound - Decibel 

The decibel scale 
of the intensity
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I0 = 10-12 W/m2 is a reference intensity
It is roughfly the threshold of human hearing

β = 0 dB      for I = I0
β = 120 dB  for I = 1 W/m2

Intensity in the unit of decibel (dB)

Sound - Decibel 

Formelsamling
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Sound – Standing waves 

Sound and standing 
waves

Vincent Hedberg - Lunds Universitet 80

Antinode                     Antinode

Sound – Standing waves 
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Here the 
pressure is 
atmospheric 

giving
displacement 

antinode  
(pressure node)

Sound – Standing waves 
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Organpipe: Airflow from below.

Standing wave: If the airspeed 
and pipelengths are choosen 

correctly.

Mouth:  Pipe is open at the 
bottom and gives a pressure 

node (displacement antinode).

Airflow: Depending on time the 
air flow will either go into the 
pipe or out through the mouth.

time = 0         time = T/2

Sound – Standing waves 
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83

Sound – Standing waves 

An organ pipe can be open-open or open-closed.
Remember: The distance between two nodes is λ/2

Formelsamling
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Sound – Doppler effect 

The Doppler effect
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Doppler effect

Sound – Doppler effect 
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The time for a 
sound wave to 

reach a listener 
(L) gets longer 
if the source 
(S) is moving 

away.

The time for a 
sound wave to 

reach a listener 
(L) gets shorter 
if the source is 
moving closer.ν

νs

fs

λbehind longer λin front  shorter

L L

Sound – Doppler effect 

λ
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Sound – Doppler effect 

What if the listener is also moving ?

change in 
frequency

The wave speed 
relative to L is

ν + νL
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L LSS

positive direction positive direction

L LSS

L LSS

L LSS

always works if the positive direction is defined 
as going from the listener to the source.

Sound – Doppler effect 

Formelsamling
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Sound – shockwave 

Shockwave
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ν: Speed of sound
νs: Speed of the plane

Shock waves

νs > ν Shockwave is created (not only when νs = ν)
νs > ν     No sound in front of the plane

Sound – shockwave 
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Sound

A conical shock wave is produced if a plane flies faster than the speed of sound.

A series of circular wave crests from the plane interfere constructively along a 
line that is given by an angle α.

ν: Speed of sound
νs: Speed of the plane

Speed of the plane in 
Mach number:

ΝΜ = νs/ν

Formelsamling
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Vågrörelselära och optik

Kapitel 32 – Elektromagnetiska vågor
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The implications of Maxwell’s Equations for magnetic and electric fields:

1.  A static electric field can exist in the absence of a magnetic field   e.g.  a  
capacitor with a static charge has an electric field without a magnetic field.

2.  A constant magnetic field can exist without an electric field  e.g. a conductor 
with constant current has a magnetic field without an electric field.

3.  Where electric fields are time-variable, a non-zero magnetic field must exist.

4.  Where magnetic fields are time-variable, a non-zero electric field must exist

5.  Magnetic fields can be generated by permanent magnets, by an electric 
current or by a changing electric field.

6.   Magnetic monopoles cannot exist. All lines of magnetic flux are closed loops.

Electromagnetic waves
Maxwell’s equations
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Electromagnetic waves
Maxwell’s equations

The speed of light from Maxwell’s equations

Permittivity: A mediums ability to form an electric field in itself.
Permeability: A mediums ability to form a magnetic field in itself. 

= 8.85 x 10-12 F/m

= 1.26 x 10-6 N/A2
Formelsamling
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B

Electromagnetic waves
Maxwell’s equations

The electromagnetic wave
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Electromagnetic waves are produced by the vibration of charged particles.

An electromagnetic wave is a wave that is capable of transmitting its energy 
through a vacuum. 

The propagation of an electromagnetic wave, 
which has been generated by a discharging 
capacitor or an oscillating molecular dipole. As the current oscillates up and 

down in the spark gap a magnetic 
field is created that oscillates in a 
horizontal plane. 

The changing magnetic field, in 
turn, induces an electric field so 
that a series of electrical and 
magnetic oscillations combine to 
produce a formation that 
propagates as an electromagnetic 
wave.The field is strongest at 90 degrees to the moving 

charge and zero in the direction of the moving charge.

Electromagnetic waves
Maxwell’s equations
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Electromagnetic waves

Electromagnetic waves
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Electromagnetic waves

The electromagnetic spectrum
λ = c / f
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Electromagnetic waves

Wavefronts: surfaces with constant phase 
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Wavefronts depends on the distance to the 
source

Electromagnetic waves
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A plane wave is a constant-frequency wave whose wavefronts are infinite parallel 
planes of constant peak-to-peak amplitude normal to the phase velocity vector. 

At a particular point and time all E and B vectors in the plane have the same magnitude.

No true plane waves exist since only a plane wave of infinite extent will propagate as a 
plane wave.  However, many waves are approximately plane waves in a localized region 
of space. 

Electromagnetic waves

In a plane electromagnetic wave the E and B fields are perpendicular to the direction 
of propagation so it is a transverse wave.

B
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Electromagnetic waves
The wave function

The wavefunction

not the same k

The electromagnetic wavefunction

Electromagnetic waves
The wave function
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Wavenumber:

Angular frequency:   

Amplitude:   Emax = c Bmax

c = λ / T = (2π/k) / (2π/ω) = ω / k

c = λ / T
f = 1 / T

Electromagnetic waves
The wave function
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Compare wavefunctions

Wavenumber:

Angular frequency:

Amplitude:    A

ν = λ / T = ω / k

Wavenumber:

Angular frequency:

Amplitude:    Emax = c Bmax

c = λ / T = ω / k

Mechanical waves                  Electromagnetic waves
Formelsamling
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Electromagnetic waves in matter:

Electromagnetic waves
The wave function

In a dielectric medium the speed of light is 
smaller than c !

K = ε / ε0

Km = μ / μ0

Dielectric constant

Relative permeability
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Refractive index        Dielectric constant       Relative permeability

Electromagnetic wave in vacuum

Electromagnetic wave in matter

Permettivity  Permability

Electromagnetic waves
The wave function

K = ε/ε0 Km = μ/μ0
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Electromagnetic waves
Power & Intensity

Power & Intensity
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The power in general:

Wave power (P): 

The instantaneous rate at which energy is transfered along the wave.

Unit: W or J/s

Wave intensity (I):

Average power per unit area through a surface perpendicular to the wave 
direction.

Unit: W/m2

Mechanical waves: 
Power & Intensity
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Electromagnetic waves
Power & Intensity

Total energy density (u): 
Energy per unit volume due to an electric and magnetic field.
Unit: J/m3

Power (P): 
The instantaneous rate at which energy is transfered along a wave.
Unit: W or J/s

The Poynting vector (S): 
Energy transferred per unit time per unit area = Power per unit area.
Unit: W/m2

Intensity (I):
Average power per unit area through a surface perpendicular to the 
wave direction = the average value of S.
Unit: W/m2
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The total energy density 
(energy per unit volume) 
due to an electric and 
magnetic field is

Conclusions: The electric and magnetic fields carry the same amount of energy.
The energy density varies with position and time.

B

B2 = ε0 μ0 E2+

where

Electromagnetic waves
Power & Intensity

Energy E-field     Energy B-field
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Energy transfer =  energy transferred per unit time per unit area.

S = Power per unit area = Energy transfer = Energy flow

Electromagnetic waves
Power & Intensity

Amplitude = maximum energy transfer

Formelsamling
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Intensity = the average value of S

The average of cos2(x) = 1/2

Electromagnetic waves in matter:

Electromagnetic waves
Power & Intensity

Formelsamling
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Vågrörelselära och optik

Kapitel 33 - Ljus
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The nature of light

Source of electromagnetic radiation
is

electric charges in accelerated motion

Thermal radiation:   
Thermal motions of molecules create electromagnetic radiation.

Lamp:
A current heats the filament which then sends out thermal radiation 

with many wavelengths.

Laser:
Atoms emits light coherently giving (almost) monocromatic radiation.
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The nature of light

Wave front: surface with constant phase.

Plane wave: is a wave whose wave fronts 
are infinite parallel planes.

Ray: an imaginary line along the direction 
of the wave’s propagation.
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Reflection and 
refraction

The nature of light
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The nature of light
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Reflection & Refraction  
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The nature of light

Conclusions:

At the surface between air and glass the 
angle is always 90 degrees and then the 

reflected and refracted light is also at 90 
degrees.

At the surface between glass and air some 
of the light is reflected and some is 

refracted.

The angle of reflection is the same as the 
incident angle.

The angle of refraction is larger than the 
incident angle. 

The nature of light

na nb

n = 1  in vacuum
n > 1  in a material

The plane of incident: 
The plane of the incident ray and the 
normal to the surface.

The reflected and refracted rays are in 
the plane of incident.
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Snell’s law:

Formelsamling
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The nature of light

Snell’s law:
na < nb

na > nb

Rule: 
Large n        Small angle
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Light intensity

The nature of light
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The nature of light

Intensity  
The intensity of the reflected 

light increases from 
almost 0% at θ = 0o

to 
100% at θ = 90o.

The intensity of the reflected 
light also depends on n and on 
polarization of the incoming 
light.

The sum of the intensity of 
the reflected and refracted 
light is equal to the intensity 
of the incoming light.
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Total internal 
reflection

The nature of light
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Total Internal Reflection
when light goes to a medium with smaller n  

The nature of light

90o
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The nature of light

Total Internal Reflection

optical fiber              Porro prism
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The nature of light

n2 < n1

Principle Structure

Optical fibers
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Dependency on 
frequency and 

wavelength

The nature of light
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The nature of light

Frequency and wavelength  na nb

n = 1  in vacuum
n > 1  in a material

ν: The speed is larger in a material with a    
small n.

f: The frequency does not depend on n.

λ: The wavelength is longer in a material 
with a small n.

λ  = ν / f      n > 1
λ0 = c / f     n = 1

λ  = λ0 / n
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Dispersion

The nature of light
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The nature of light
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The nature of light

Dispersion

Answer:  n must depend on λ !

n = c / ν

so the speed in a material must 
then depend on λ

How is this 
possible ?
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The nature of light

Rainbow
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Vågrörelselära och optik

Kapitel 34 - Optik
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Mirrors

Geometrical optics
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Geometrical optics

Virtual Images: outgoing rays diverge

Real Images: outgoing rays converge to an 
image that can be shown on a screen
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Geometrical optics

Sign rules:

Object distance (s) – positive if 
same side as incoming light.

Image distance (s’) – positive if 
same side as outgoing light.

Point object

Extended 
object

positive

negative

Virtual image

Formelsamling
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Geometrical optics

Flat mirror
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Geometrical optics

Spherical mirror
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Geometrical optics

An infinite number of rays can be 
drawn from an object to its 

image.

But only two rays are needed 
to determine the location of 

the image.
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Geometrical optics

How to find the image in a concave mirror
The bottom of the object is on the optical axis and so the bottom of 

the image will also be on the optical axis.

The top of the image can be found with any two rays. Use for example 
two rays that goes through the focal point.

y
y’

s’

s

f
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Geometrical optics

http://simbucket.com/lensesandmirrors/
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Summary spherical mirrors

Geometrical optics

Sign rules:

Object distance (s) – positive 
if same side as incoming light.

s
Image distance (s’) – positive 
if same side as outgoing light.

Radius of curvature (R) –
positive if center is on same 
side as outgoing light.

Magnification (m) – positive if 
direction of object and image 
is the same.

s’

f
R

y’ negative
y, s, s’, f  positive

y
y’

Formelsamling

Vincent Hedberg - Lunds Universitet
144

Geometrical optics

y’ negative
y, s, s’, f  positive

y’ negative
y, s, s’, f  positive

y’ negative
y, s, s’, f  positive

s’ negative
y, y’, s, f  positive

s
s’
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Geometrical optics

Convex mirrors

s’, f negative
y, y’, s  positive

Virtual
Focal Point
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Geometrical optics

http://simbucket.com/lensesandmirrors/
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Geometrical optics

Spherical surface
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Geometrical optics
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Geometrical optics

Spherical surface -Summary

s positive
s’ positive
R positive

Sign rules:

Object distance (s) –
positive if same side as 

incoming light.

Image distance (s’) –
positive if same side as 

outgoing light.

Radius of curvature (R) –
positive if center is on 
same side as outgoing 

light.

Formelsamling
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Geometrical optics

Special case: flat surface

na/s = -nb/s’

-s’/s = nb/na
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Geometrical optics

Lenses
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Geometrical optics

Different type of lenses
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Geometrical optics
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Geometrical optics

Useful rays
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Geometrical optics

http://simbucket.com/lensesandmirrors/
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Geometrical optics

An object placed at the focal 
point appear to be at infinity
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Geometrical optics

s’ is negative
f is positive 
m is positive

s’

s’

s’ is positive
f is positive 
m is negative

Convex lenses -SummarySign rules:

Object distance (s) –
positive if same side as 

incoming light.

Image distance (s’) –
positive if same side as 

outgoing light.

Focal length (f) –
positive for converging 
lenses (convex lenses)

Formelsamling
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Geometrical optics

Formelsamling

Gauss’ formula Newton’s formula
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Geometrical optics

Two lenses
s’1s1 s’2s2

Vincent Hedberg - Lunds Universitet 160

Geometrical optics

EXAMPLE
Known: s1, f1, f2 and L
Calculate s’2 and m

s’1s1 s’2s2

L
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Lenses

Geometrical optics
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Geometrical optics
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Geometrical optics

http://simbucket.com/lensesandmirrors/
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Geometrical optics

f is negative for 
diverging lenses

s’ is negative for 
diverging lenses

m is positive

s’
s

Lens formula for concave lenses 
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Geometrical optics

Lenses

Rule: 
A lens that is thicker at the center than the edges is converging (positive f)
A lens that is thinner at the center than the edges is diverging   (negative f)
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=

The lensmaker’s equation

Geometrical optics

Formelsamling
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Geometrical optics

f = positive         R1 = positive         R2 = positive       s’ = positive or negative

Sign rule:   Radius of curvature – positive if center is on same side as outgoing light.

f = positive         R1 = positive         R2 = negative      s’ = positive or negative

f = negative         R1 = negative         R2 = positive      s’ = negative
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Geometrical optics

The eye



Vincent Hedberg - Lunds Universitet 169

Geometrical optics

Near point: Closest distance to the eye at which 
people can see clear (7cm at age 10 to 40cm at 
age 50 for normal eye).

Normal reading distance: Assumed to be 25 cm 
when designing correction lenses.

Lenses for corrections are given in diopter.  

Lens power = 1/f  (unit diopter = m-1)
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Geometrical optics

When the person puts an object at s = 25 cm from the correcting lens we want the image 
to end up at s’ = 100 cm because this is the nearest point the eye can see sharply.
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Geometrical optics

The lens should move the actual far point from 50 cm to infinity. 
The correcting lens should therefore have s = infinity for s’ = 50-2 = 48 cm.
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Geometrical optics

The magnifying glass
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s’

s’

A magnifying glass is a convex lens.

Geometrical optics

If you hold a magnifying glass 
far away from the eye (arms 
lengths distance) you can see 
a magnified and up-side down 
image. 

The normal use of a 
magnifying glass is to put the 
object between the focal 
point and the lens to get a 
magnified up-right image.
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Geometrical optics

The magnifying glass

When the object is at the focal point 
one uses angular magnification (M) 
instead of lateral magification (m).

Near point: Closest 
distance an eye can focus 
(approximatively 25 cm)
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Geometrical optics

The microscope
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Geometrical optics

Magnifying glass
(f is a couple of cm)

Creates magnified 
image close to the 
focal point of the 

eye piece (f < 1 cm)
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s1 s1’
L

Eyepiece
Objective

Objective

Eyepiece
Angular magnification of 

magnifying glass 

Microscope
Magnification

Geometrical optics

σ is the nearpoint which is 
typically 25 cm
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Geometrical optics

The telescope
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Geometrical optics

The first image will be in the 
focal point of the first lens. 

The eye piece works as 
a magnifying glass with 
I in its focal point.

The angular magnification of a telescope 
is defined as the ratio of the angle of 
the image to that of the incoming light.
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s1 s1’

Geometrical optics

Object at 
infinity

Object at a 
close distance

Comparing microscopes with telescopes

σ is the nearpoint which is 
typically 25 cm

L

Large f1 & Small f2

Small f1 & Small f2

Formelsamling



Vincent Hedberg - Lunds Universitet 181Vincent Hedberg - Lunds Universitet 181

Vågrörelselära och optik

Kapitel 35 - Interferens
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Interference

Interference:  Wave overlap in space

Coherent sources: Same frequency 
(or wavelength) and constant phase 
relationship (not necessarily in 
phase).
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Interference

Contructive interference

Destructive interference

Formelsamling
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Interference

Contructive interference

Destructive interference

Antinodal curves =
Contructive 
interference

A path difference of 
one wavelength 

corresponds to a phase 
difference of 2π

Formelsamling
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Interference

Contructive

Destructive
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m=0

m=-1

m=1

m=2

m=3

y

Geometry:

R

y

Contructive interference:

Interference
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Interference

A path difference of one 
wavelength corresponds to 
a phase difference of 2π

Path difference
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Interference

y

small θ

θ

Introduce y in the formula

Formelsamling
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Interference

m=0

m=-1

m=1

m=2

m=3

y

Intensity:

Formelsamling
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Interference

Contructive interference:

Intensity:

Summary
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Interference

The Michelson 
Interferometer
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Interference

y
The observer will see 
an interference 
pattern with rings.

The fringes in the 
pattern will move when 
the mirror is moved.      

The number of fringes 
(m) can be used to 
calculate y or λ

The Michelson Interferometer

The compensator plate
compensates for this
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Interference
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Vågrörelselära och optik

Kapitel 36 - Diffraktion
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Diffraction
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Diffraction

Interference: 
Double slit 
experiment

Diffraction: 
single slit 

experiment
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Diffraction
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Diffraction

For every point in the top half of the slit there is a 
corresponding point in the bottom half.
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Diffraction

Destructive
Interference: Geometry:

Small angles:

Formelsamling
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Diffraction

Bright bands:

Dark bands:
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r1

r2

Path difference: 
r2 – r1 = a sin(θ)

A path difference of one 
wavelength corresponds to 
a phase difference of 2π

Diffraction

r2-r1 is the path difference 
between a ray at the top and 

bottom of the slit. Formelsamling
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Diffraction
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β = 2π

β = 4π

β = 6π

β = 0

β = -6π

β = -2π

β = -4π

Intensity

where

Diffraction

Formelsamling
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Intensity:

Summary
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Diffraction

Two broad slits
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Diffraction

In the analysis of interference from two slits it was assumed 
that they were very narrow. What if they are broad ?

Two narrow slits: One broad slit:

Two broad slits:

where

Formelsamling
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Diffraction

Two narrow slits:

One broad slit:

Two broad slits:
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Diffraction

Multiple slits
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Diffraction

N-2 small peaks

2 slits

8 slits

The path difference between 
adjacent slits that gives maximum 
intensity with many slits is always:
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Diffraction

N = 16N = 2 N = 8

N-1 minima

Principal maxima:

Diffraction

Formelsamling
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Diffraction

In diffraction grating one uses devices with thousands of slits or 
reflecting surfaces.

This gives very narrow principal maximum that can be used to determine 
the wavelength of light.

Transmission grating                                 Reflection grating
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Diffraction

Spectrometers
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Diffraction

Spectrometer for astronomy

Light incident on a grating is dispursed into a spectrum. The angles of 
deviations of the maxima are measured to calculate the wave length.

Vincent Hedberg - Lunds Universitet 214

Diffraction

Chromatic resolving power:
The minimum wavelength difference (Δλ) that 
can be distinguished by a spectrograph.

R is higher for many slits and higher orders !

Formelsamling
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Diffraction

Pinhole diffraction
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Diffraction
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Diffraction

Diffraction limits the angular resolution of 
optical intruments.
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Rayleigh’s criterion:  
Two point objects can be resolved by an optical 
system if their angular separation is larger than θ1 where

Diffraction

The limit for two objects to be 
resolved is when the center of 
one diffraction pattern is in the 
first minimum of the other.

D

Formelsamling
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