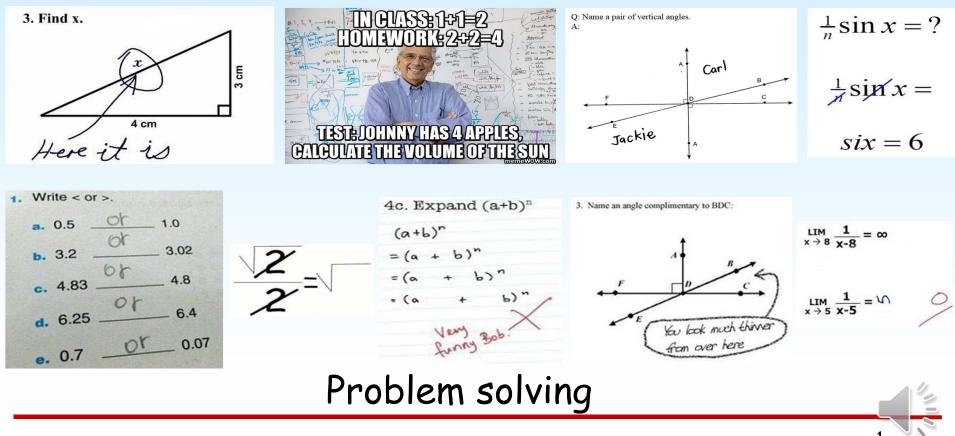


Wavemechanics



An ultrasonic device uses sound at a frequency of 6.7×10^6 Hz.

How long does each oscillation take and what angular frequency does this correspond to ?

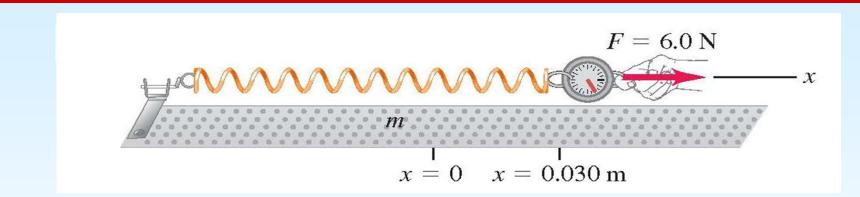
f = 1/T ω = 2πf

$$T = \frac{1}{f} = \frac{1}{6.7 \times 10^{6} \text{ Hz}} = 1.5 \times 10^{-7} \text{ s} = 0.15 \ \mu \text{s}$$

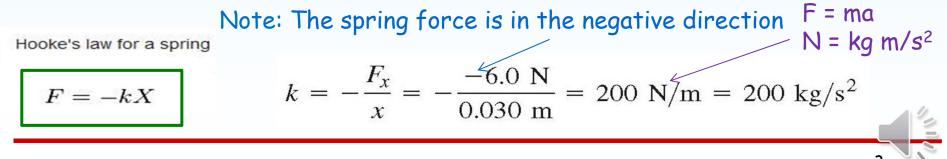
$$\omega = 2\pi f = 2\pi (6.7 \times 10^{6} \text{ Hz})$$

$$= (2\pi \text{ rad/cycle})(6.7 \times 10^{6} \text{ cycle/s})$$

$$= 4.2 \times 10^{7} \text{ rad/s}$$

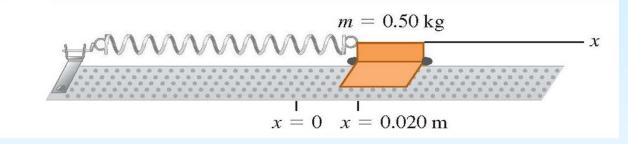


What is the spring constant ?



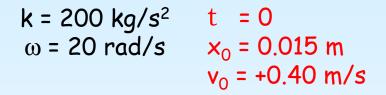
 $k = 200 \text{ kg/s}^2$

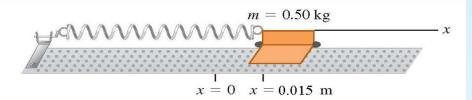
Harmonic oscillation: Problem



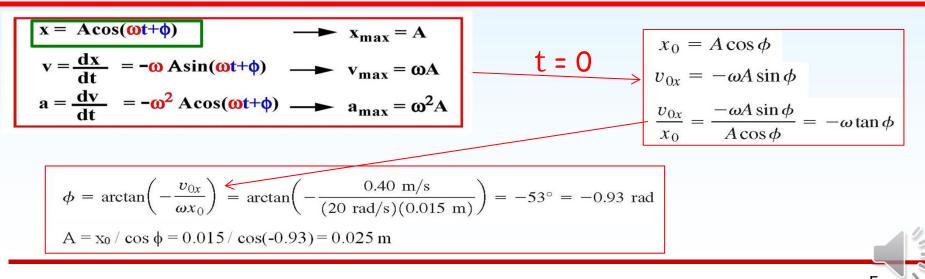
The mass is withdrawn 2 cm and released.

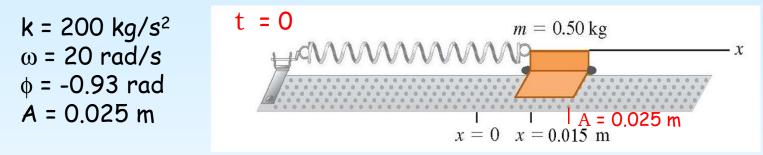
What will be the angular frequency, frequency and period of the oscillations?





What is the amplitude and the phase angle?

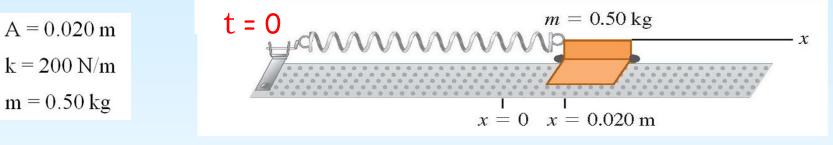




What are the functions for position, velocity and acceleration?

$$x = A\cos(\omega t + \phi) \longrightarrow x_{max} = A$$
$$v = \frac{dx}{dt} = -\omega A\sin(\omega t + \phi) \longrightarrow v_{max} = \omega A$$
$$a = \frac{dv}{dt} = -\omega^2 A\cos(\omega t + \phi) \longrightarrow a_{max} = \omega^2 A$$

 $x = (0.025 \text{ m}) \cos [(20 \text{ rad/s})t - 0.93 \text{ rad}]$ $v_x = -(0.50 \text{ m/s}) \sin [(20 \text{ rad/s})t - 0.93 \text{ rad}]$ $a_x = -(10 \text{ m/s}^2) \cos [(20 \text{ rad/s})t - 0.93 \text{ rad}]$

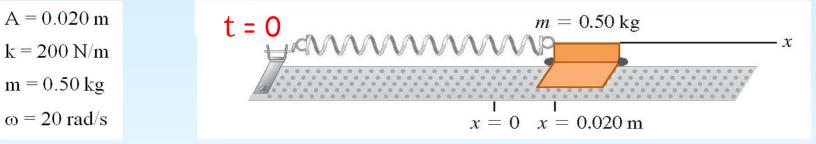


What is
$$v_{max}$$
, a_{max} and ω ?

$$x = A\cos(\omega t + \phi)$$
 \rightarrow $x_{max} = A$ $v = \frac{dx}{dt}$ $= -\omega A\sin(\omega t + \phi)$ \rightarrow $v_{max} = \omega A$ $a = \frac{dv}{dt}$ $= -\omega^2 A\cos(\omega t + \phi)$ \rightarrow $a_{max} = \omega^2 A$

$$\omega = \sqrt{\frac{k}{m}} = \sqrt{\frac{200 \text{ kg/s}^2}{0.50 \text{ kg}}} = 20 \text{ rad/s}$$

 $v_{max} = 20 \cdot 0.020 = 0.40 \text{ m/s}$ $a_{max} = 20 \cdot 20 \cdot 0.020 = 8 \text{ m/s}^2$



What is the phase angle ?

$$x = A\cos(\omega t + \phi) \longrightarrow x_{max} = A$$

$$v = \frac{dx}{dt} = -\omega A\sin(\omega t + \phi) \longrightarrow v_{max} = \omega A$$

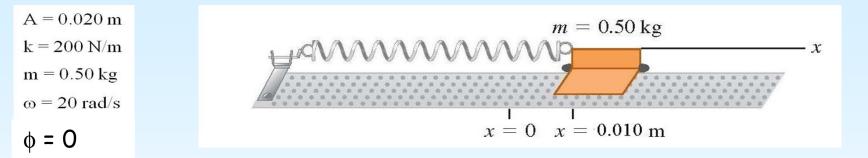
$$a = \frac{dv}{dt} = -\omega^2 A\cos(\omega t + \phi) \longrightarrow a_{max} = \omega^2 A$$

Getting the phase angle:

 $\mathbf{x} = \mathbf{A}$ when $\mathbf{t} = 0$

$$A = A \cos(0 + \phi)$$

 $\phi = 0$



What is v and a when x is halfway in from the maximum position?

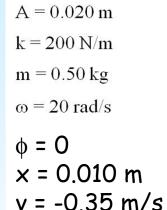
$$x = A\cos(\omega t) \longrightarrow x_{max} = A$$

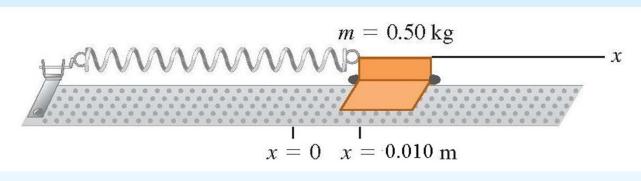
$$v = \frac{dx}{dt} = -\omega A\sin(\omega t) \longrightarrow v_{max} = \omega A$$

$$a = \frac{dv}{dt} = -\omega^2 A\cos(\omega t) \longrightarrow a_{max} = \omega^2 A$$

x = $Acos(\omega t)$ 0.010 = 0.020cos(20t) ωt = 20t = acos(0.010/0.020) = 1.047 rad V = $-20 \cdot 0.020 sin(1.047) = -0.35 m/s$

$$a = -20^2 \cdot 0.020 \cos(1.047) = -4.0 \text{ m/s}^2$$





What is the kinetic, potential and total energy?

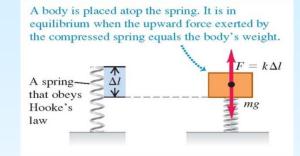
Kinetic energy:
$$E_k = \frac{mv^2}{2}$$
 where $v = -\omega A \sin(\omega t)$
Potential energy: $E_p = \frac{kx^2}{2}$ where $x = A\cos(\omega t)$
Total energy: $E_t = E_k + E_p = \frac{kA^2}{2}$ ($E_k = 0$ for $x = A$)

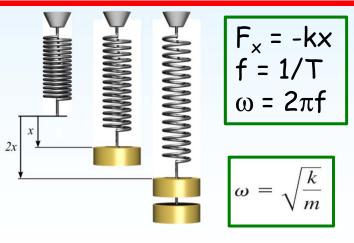
$$Ep = \frac{1}{2}kx^{2} = \frac{1}{2}(200 \text{ N/m})(0.010 \text{ m})^{2} = 0.010 \text{ J}$$

$$Ek = \frac{1}{2}mv_{x}^{2} = \frac{1}{2}(0.50 \text{ kg})(-0.35 \text{ m/s})^{2} = 0.030 \text{ J}$$

$$E_{T} = E_{p} + E_{k} = 0.040 \text{ J}$$

Assume the following: A car has a mass of 1000 kg. A drivers weight is F = 980 N and causes the shock absorbers to drop by 2.8 cm. The car drives over a bump and begins to swing by harmonic oscillation. What will be the period and frequency?





$$k = -\frac{F_x}{x} = -\frac{980 \text{ N}}{-0.028 \text{ m}} = 3.5 \times 10^4 \text{ kg/s}^2$$

The person's mass is $w/g = (980 \text{ N})/(9.8 \text{ m/s}^2) = 100 \text{ kg}$. The *total* oscillating mass is m = 1000 kg + 100 kg = 1100 kg. The period T is

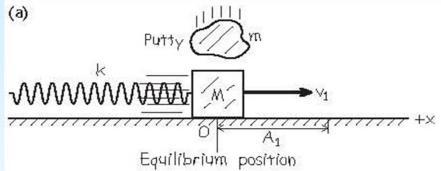
$$T = \frac{1}{f} = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{m}{k}} = 2\pi \sqrt{\frac{1100 \text{ kg}}{3.5 \times 10^4 \text{ kg/s}^2}} = 1.11 \text{ s}$$

The frequency is f = 1/T = 1/(1.11 s) = 0.90 Hz.

12

A lump of clay with the mass m falls on a moving mass M at the equilibrium position.

Calculate the new period T₂ ! Give the result as a function of k, m, M !



$$f = 1/T$$

$$\omega = 2\pi f$$

$$T = \frac{1}{f} = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{m}{k}}$$

$$\omega = \sqrt{\frac{k}{m}}$$
The new period T₂:
$$T_2 = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{M+m}{k}}$$

A lump of clay with the mass m falls on a moving mass M at the maximum position.

Calculate the new period T_2 and the new amplitude A_2 !

(b) v = 0Equilibrium position

$$f = 1/T$$

$$\omega = 2\pi f$$

$$\omega = \sqrt{\frac{k}{m}}$$

$$For x = A \text{ the kinetic energy = 0:}$$

$$F_{2} = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{M+m}{k}}$$

$$E_{t1} = 0 + E_{p1} = \frac{1}{2}kA_{1}^{2}$$

$$E_{t2} = 0 + E_{p2} = \frac{1}{2}kA_{2}^{2}$$

$$F_{t1} = E_{t2} \text{ och } A_{2} = A_{1}^{2}$$

The speed of sound depends on the temperature and is 344 m/s at 20 degrees.

What, then, is the wavelength of sound with the frequency 262 Hz ?

$$v = f \lambda$$

$$\lambda = \frac{v}{f} = \frac{344 \text{ m/s}}{262 \text{ Hz}} = \frac{344 \text{ m/s}}{262 \text{ s}^{-1}} = 1.31 \text{ m}$$

You wave a rope up and down and create a sine wave with the frequency 2.00 Hz, the amplitude 0.075 m and the wave speed 12.0 m/s. Calculate the period, the wavelength, the angular frequency and the wave number !

f = 1/T
$\omega = 2\pi f$
$v = f \lambda$
$k = 2\pi/\lambda$

Given:

- A: Amplitude = 0.075 m
- f: Frequency = 1 / T = 2.00 Hz
- v: Wave speed = $\lambda / T = 12.0 \text{ m/s}$

To calculate:

T: Period = 1 / f = 0.5 s

 λ : Wavelength = v T = 6.00 m

 ω : Angular frequency = 2 π f = 4 π rad/s

k: Wave number = $2 \pi / \lambda = \frac{1}{3}\pi$ rad/m

(4π†

16

At t = 0, the rope you hold in your hand (x = 0) is in its highest position (0.075 m). What is the wave function for the oscillations? What will be the wave function at x = 0 and x = 3.00 m?

Calculated previously:

$$\infty$$
: Angular frequency = 2 π f = 4π rad/s
k: Wave number = 2 π / $\lambda = \frac{1}{3}\pi$ rad/m

$$y(x,t) = A\cos(kx - \omega t) = 0.075\cos(\frac{1}{3}\pi x - 4\pi t)$$

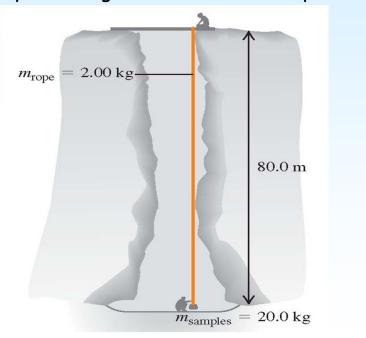
$$y(0,t) = 0.075\cos(-4\pi t) = 0.075\cos(4\pi t)$$

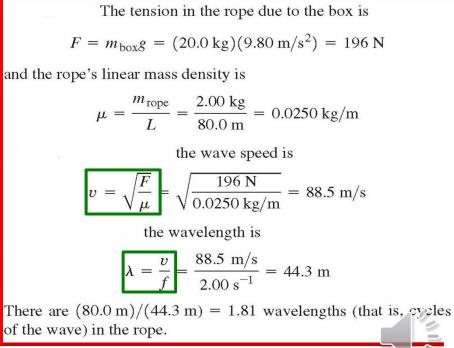
$$y(3,t) = 0.075\cos(\pi - 4\pi t) = -0.075\cos(-4\pi t) = -0.075\cos(-4\pi t)$$

$$\cos(\pi - x) = -\cos(x)$$

17

A man in a hole sends a signal by making a wave on a rope at whose end it hangs a weight of 20 kg. What is the speed of the wave in the rope? If the rope is put into sinus oscillation with f = 2Hz, how many wavelengths can fit on the rope?





- A: Amplitude = 0.075 m
- f: Frequency = 1 / T = 2.00 Hz
- v: Wave speed = $\lambda / T = 12.0 \text{ m/s}$
- T: Period = 1 / f = 0.5 s
- λ : Wavelength = v T = 6.00 m
- ω : Angular frequency = 2 π f = 4 π
- k: Wave number = $2 \pi / \lambda = \frac{1}{3}\pi$
- μ : Linear mass density = 0.250 kg/m
- F: Tension = 36.0 N

You swing a rope up and down and create a sine wave with the frequency 2.00 Hz, the amplitude 0.075 m and the wave speed 12.0 m/s. The rope weighs 250 grams per meter and is tensioned with the force of 36.0 N.

Calculate the maximum power and average power needed.

$$P_{\text{max}} = \sqrt{\mu F \omega^2 A^2}$$

= $\sqrt{(0.250 \text{ kg/m})(36.0 \text{ N})}(4.00\pi \text{ rad/s})^2(0.075 \text{ m})^2}$
= 2.66 W

$$P_{\rm av} = \frac{1}{2} P_{\rm max} = \frac{1}{2} (2.66 \text{ W}) = 1.33 \text{ W}$$

A sine wave moves in negative x-direction along a guitar string at the speed of 143 m/s.

The amplitude is 0.750 mm and the frequency 440 Hz. The wave is reflected at x = 0 and forms a standing wave.

What will be the function that describes the movement of the string in the y-direction ?

 $y(x,t) = 2A \sin(kx) \sin(\omega t)$

$$A = 0.750 \text{ mm} = 7.50 \times 10^{-4} \text{ m}$$

$$\omega = 2\pi f = (2\pi \text{ rad})(440 \text{ s}^{-1}) = 2760 \text{ rad/s}$$
$$k = \frac{\omega}{v} = \frac{2760 \text{ rad/s}}{143 \text{ m/s}} = 19.3 \text{ rad/m}$$

Mechanical waves: Problems

20

v = 143 m/s f = 440 Hz A = 0.00075 m ω = 2760 rad/s k = 19.3 rad/m

Where will there be nodes on the string ?

There will be nodes for X

$$=0,\frac{\lambda}{2},\frac{2\lambda}{2},\frac{3\lambda}{2},\ldots$$

$$f = v / \lambda$$
 \Longrightarrow $\lambda = v / f = 143 / 440 = 0.325 m$

There will be nodes for X = 0, 0.163 m, 0.325 m,

Mechanical waves: Problems

21

v = 143 m/s f = 440 Hz A = 0.00075 m ω = 2760 rad/s k = 19.3 rad/m

What is the amplitude of the standing wave ? What will be the maximum speed and the maximum acceleration ?

Amplitude = 2A = 0.0015 m

$$y(x,t) = 2A \sin(kx) \sin(\omega t)$$

$$v_y(x,t) = 2A\omega \sin(kx) \cos(\omega t)$$

$$v_y(x,t)_{max} = 2A\omega = 4.14 \text{ m/s}$$

$$a_{y}(x,t) = -2A\omega^{2} \sin(kx) \sin(\omega t)$$
$$a_{y}(x,t)_{max} = 2A\omega^{2} = 11426 \text{ m/s}^{2}$$

An octobasse has a string that is 2.50 m long and weighs 40.0 grams per meter.

What tension force is needed for the fundamental frequency to be 20.0 Hz ?

$$F = 4\mu L^2 f_1^2 = 4(40.0 \times 10^{-3} \text{ kg/m})(2.50 \text{ m})^2 (20.0 \text{ s}^{-1})^2 = 400 \text{ N}$$

Mechanical waves: Problems

$f_1 = 20.0 \text{ Hz}$ L = 2.50 m $\mu = 40.0 \text{ g/m}$ F = 400 N

What will be the frequency and wavelength of the second harmonic frequency?

What will be the frequency and wavelength of the second overtone?

$$f_n = n \frac{v}{2L} = n f_1 \quad (n = 1, 2, 3, ...)$$

$$f_2 = 2 f_1 = 2(20.0 \text{ Hz}) = 40.0 \text{ Hz}$$

$$\lambda_n = \frac{2L}{n} \quad (n = 1, 2, 3, ...)$$

$$\lambda_2 = \frac{2L}{2} = \frac{2(2.50 \text{ m})}{2} = 2.50 \text{ m}$$

The second overtone is the
$$f_3 = 3f_1 =$$

second frequency above the
fundamental frequency, i.e. n = 3 $\lambda_3 = \frac{2L}{3} =$

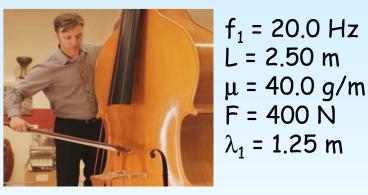
$$f_3 = 3f_1 = 3(20.0 \text{ Hz}) = 60.0 \text{ Hz}$$

2L 2(2.50 m)

(2.50 m)

 $= 2.50 \,\mathrm{m}$

$$=\frac{2L}{3}=\frac{-(2.33 \text{ m})}{3}=1.67 \text{ m}$$



The string vibrates at its fundamental frequency.

What is the frequency and wavelength of the sound it emits ?

The speed of sound is 344 m/s.

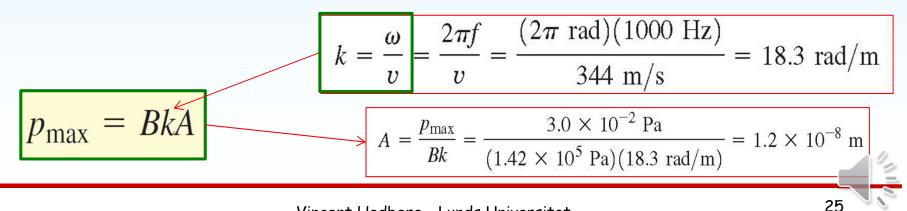
$$\begin{array}{c}
 f = f_1 = 20.0 \text{ Hz} \\
 \lambda = \nu / f
\end{array}$$

$$\begin{array}{c}
 f = f_1 = 20.0 \text{ Hz} \\
 \lambda_{1(\text{sound})} = \frac{v_{\text{sound}}}{f_1} = \frac{344 \text{ m/s}}{20.0 \text{ Hz}} = 17.2 \text{ m}
\end{array}$$
Vincent ladients, lunds linearitet

A sinusoidal sound wave has a frequency of 1000 Hz and a pressure amplitude of 3.0×10^{-2} Pa.

Air: v = 344 m/s, $B = 1.42 \times 10^5 \text{ Pa}$

What will be the maximum movement of the air due to this sound wave?



26

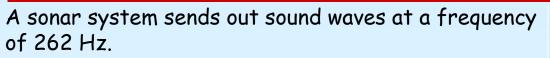
A human can hear frequencies between 20 and 20000 Hz. What wavelengths does this correspond to ?

Assume that v = 344 m/s

$$v = f \cdot \lambda = \frac{\omega}{k}$$

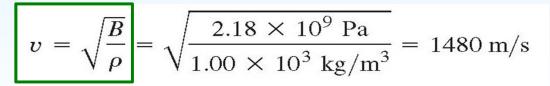
 $\lambda = 344 / 20 = 17 \text{ m}$ for $f = 20 \text{ Hz}$
 $\lambda = 344 / 20000 = 1.7 \text{ cm}$ for $f = 20 \text{ kHz}$

Sound: Problems



What will be the speed and wavelength of this sound wave if B = 2.18×10^9 Pa ?

What will be the velocity and wavelength of the wave in air if B = 1.42×10^5 Pa and the density 1.225 kg/m³



$$\lambda = \frac{v}{f} = \frac{1480 \text{ m/s}}{262 \text{ s}^{-1}} = 5.65 \text{ m}$$

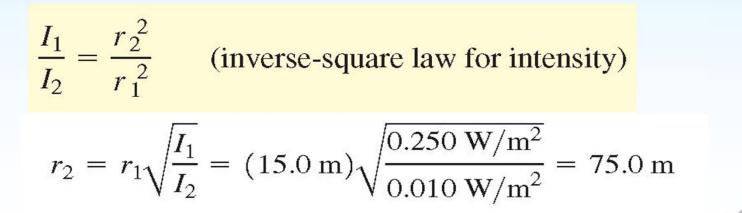
v = 340 m/s in air

 λ = 1.3 m in air

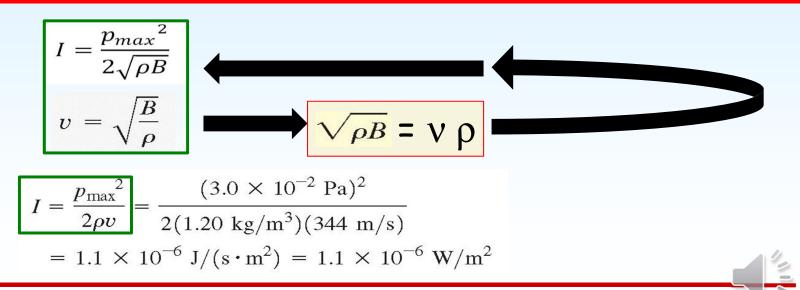
28

A siren sends out sound waves uniformly in all directions. The sound intensity is 0.250 W/m^2 at a distance of 15.0 m.

At what distance is the intensity 0.010 W/m^2 ?



Calculate the sound intensity if the pressure amplitude is 3.0×10^{-2} Pa, the air density is 1.20 kg/m³ and the speed of sound is 344 m/s !



What is the pressure amplitude of a sound wave with f = 20 Hz if it has the same intensity as a sound wave with f = 1000 Hz, I = $1.1 \times 10^{-6} \text{ W/m}^2$ and $p_{max} = 3.0 \times 10^{-2} \text{ Pa}$. Assume that $\rho = 1.20 \text{ kg/m}^3$ and v = 344 m/s

Wave 1: f = 1000 Hz, $p_{max} = 3.0 \times 10^{-2} \text{ Pa}$, $\rho = 1.20 \text{ kg/m}^3$, v = 344 m/s, $I = 1.1 \times 10^{-6} \text{ W/m}^2$ Wave 2: f = 20 Hz, $p_{max} = ????????$, $\rho = 1.20 \text{ kg/m}^3$, v = 344 m/s, $I = 1.1 \times 10^{-6} \text{ W/m}^2$

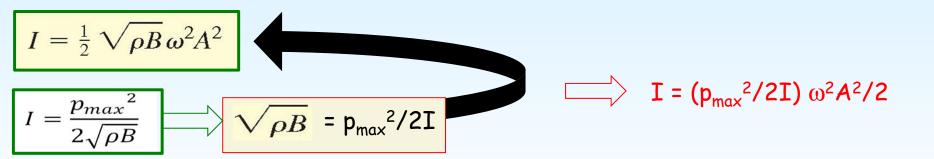
$$I = \frac{p_{max}^2}{2\sqrt{\rho B}}$$

Since ρB = constant and $I_1 = I_2$ then follows that $p_{max2} = p_{max1} = 3.0 \times 10^{-2} Pa$

Wave 2: f = 20 Hz, $p_{max} = 3.0 \times 10^{-2} \text{ Pa}$, $\rho = 1.20 \text{ kg/m}^3$, v = 344 m/s, $I = 1.1 \times 10^{-6} \text{ W/m}^2$

Sound: Problems

What is the displacement amplitude of Wave 2 in the previous problem ? Wave 2: f = 20 Hz, $p_{max} = 3.0 \times 10^{-2} \text{ Pa}$, $\rho = 1.20 \text{ kg/m}^3$, v = 344 m/s, $I = 1.1 \times 10^{-6} \text{ W/m}^2$



 $I = (p_{max}^2/2I) \omega^2 A^2/2 \qquad \square \qquad I^2 = p_{max}^2 \omega^2 A^2/4 \qquad \square \qquad I = p_{max} \omega A/2$

A = 2I / $p_{max}\omega$ = 2 × 1.1 × 10⁻⁶ / (3.0 × 10⁻² × 2 π × 20) = 0.58 μ m

At a concert you want a sound intensity that is 1 W/m^2 at a distance of 20 m from the speakers. What output power do the speakers need?

Intensity is the average power per unit area:

The intensity through a sphere with radius r:

The intensity through a hemisphere with radius r:

$$I = P_{av} / A_{rea}$$

$$I = \frac{P}{4\pi r^2}$$

$$I = \frac{P}{2\pi r^2}$$

$$P = 2 \pi r^2 I = 2.5 kW$$

Sound: Problems

33

After 10 minutes at 120 dB, the human hearing threshold is temporarily changed from 0 dB to 28 dB if f = 1000 Hz.

After 10 years of 92 dB, the limit for human hearing is permanently changed from 0 dB to 28 dB if f = 1000 Hz.

What sound intensity corresponds to 28 dB and 92 dB?

$$\beta = 10 \log \frac{I}{I_0}$$

$$I = I_0 \cdot 10^{\beta/10} \text{ with } I_0 = 10^{-12} \text{ W/m}^2$$

$$I_{28 \text{ dB}} = (10^{-12} \text{ W/m}^2) 10^{2.8} = 6.3 \times 10^{-10} \text{ W/m}^2$$

$$I_{92 \text{ dB}} = (10^{-12} \text{ W/m}^2) 10^{9.2} = 1.6 \times 10^{-3} \text{ W/m}^2$$

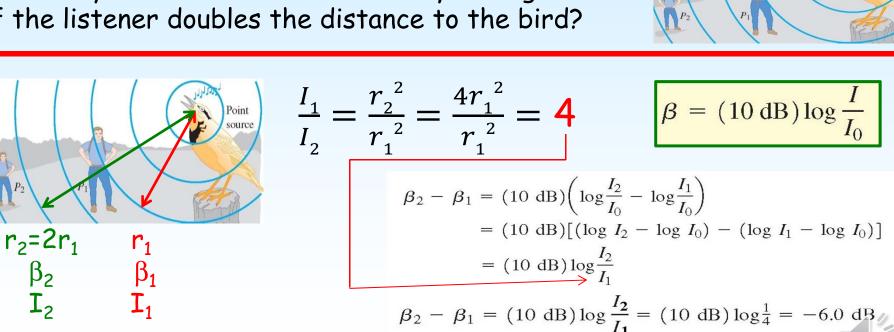
β₂

Sound: Problems

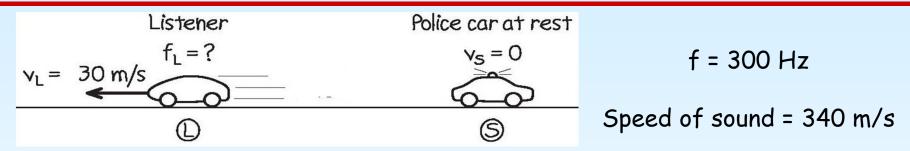
34

Point

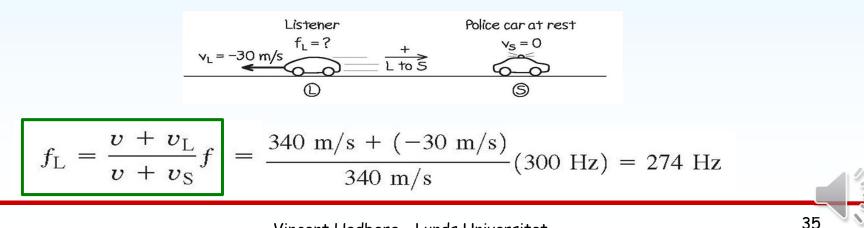
A bird sings with constant power. How many decibels does the intensity level go down if the listener doubles the distance to the bird?



Sound: Problems

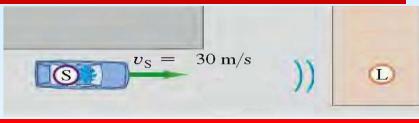


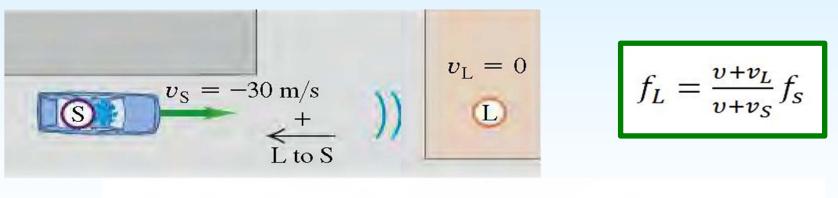
What frequency does the listener hear?



Sound: Problems

A police car with a siren of f = 300 Hz drives towards a house at the speed of 30 m/s. What frequency does a listener hear in the house?

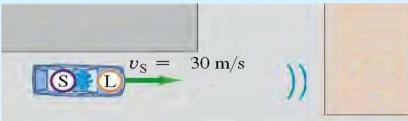




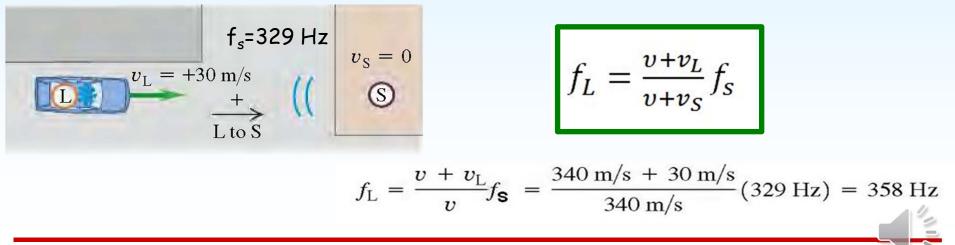
$$f_{\rm W} = \frac{v}{v + v_{\rm S}} f_{\rm S} = \frac{340 \text{ m/s}}{340 \text{ m/s} + (-30 \text{ m/s})} (300 \text{ Hz}) = 329 \text{ Hz}$$

Sound: Problems

A police car with a siren of f = 300 Hz drives towards a house at the speed of 30 m/s. What frequency does a listener hear in the police car if the sound is reflected back to it?

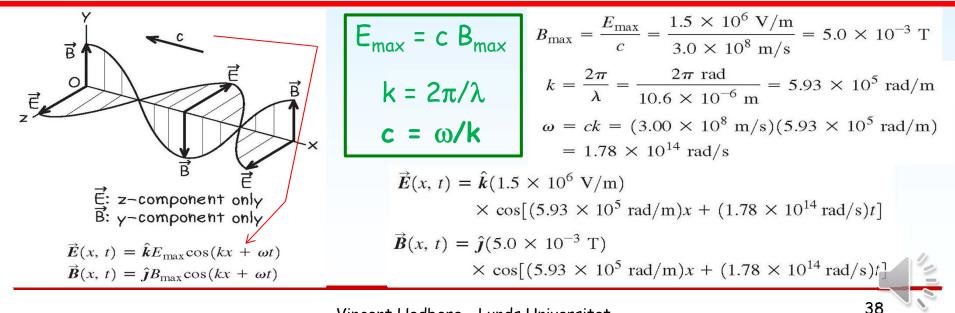


The house becomes a sound source with the frequency 329 Hz as calculated earlier:



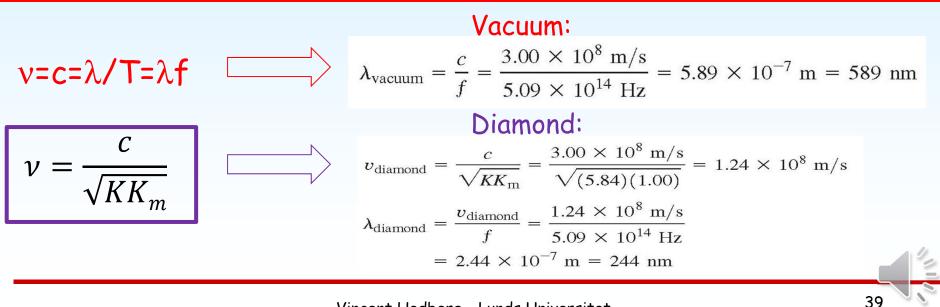
A laser sends out a sinusoidal electromagnetic wave in the negative x-direction with the wavelength 10.6 μ m. The E-field is in the z-direction and E_{max} = 1.5 MV/m.

Give the wave function of the laser beam.



Yellow light with $f = 5.09 \times 10^{14}$ Hz goes from vacuum into a diamond.

What is the wavelength in vacuum? What is the wavelength and wave velocity in the diamond if K = 5.84 & K_m =1.00



Radio waves with 90.0 MHz go from vacuum into insulating ferrite.

What is the wavelength in vacuum?

What is the wavelength and wave velocity in the ferrite if K = 10.0 & K_m =1000 ?

$v=\lambda/T=\lambda f=c$
$v = \frac{c}{c}$
$v = \frac{1}{\sqrt{KK_m}}$

$$\lambda_{\text{vacuum}} = \frac{c}{f} = \frac{3.00 \times 10^8 \text{ m/s}}{90.0 \times 10^6 \text{ Hz}} = 3.33 \text{ m}$$

$$v_{\text{ferrite}} = \frac{c}{\sqrt{KK_{\text{m}}}} = \frac{3.00 \times 10^8 \text{ m/s}}{\sqrt{(10.0)(1000)}} = 3.00 \times 10^6 \text{ m/s}$$

$$\lambda_{\text{ferrite}} = \frac{v_{\text{ferrite}}}{f} = \frac{3.00 \times 10^6 \text{ m/s}}{90.0 \times 10^6 \text{ Hz}}$$

$$= 3.33 \times 10^{-2} \text{ m} = 3.33 \text{ cm}$$

41

$$Given:$$

$$\mu_0 = 4\pi \times 10^{-7} \text{ T} \cdot \text{m/A}$$

$$\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{N} \cdot \text{m}^2$$

$$B_{\max} = \frac{E_{\max}}{c} = \frac{100 \text{ V/m}}{3.00 \times 10^8 \text{ m/s}} = 3.33 \times 10^{-7} \text{ T}$$

$$E (x, t) = E_{\max} \cos(kx - \omega t)$$

$$u(x,t) = \varepsilon_0 E^2 = \varepsilon_0 E_{\max}^2 \cos^2(kx - \omega t)$$

$$u_{\max} = \varepsilon_0 E_{\max}^2 = (8.85 \times 10^{-12} \text{ C}^2/\text{N} \cdot \text{m}^2)(100 \text{ N/C})^2 = 8.85 \times 10^{-8} \text{ N/m}^2$$

A sinusoidal electromagnetic wave has E_{max} = 100 V/m and B_{max} = 3.33×10⁻⁷ T.

What is the intensity?

$$Given:$$

$$\mu_0 = 4\pi \times 10^{-7} \text{ T} \cdot \text{m/A}$$

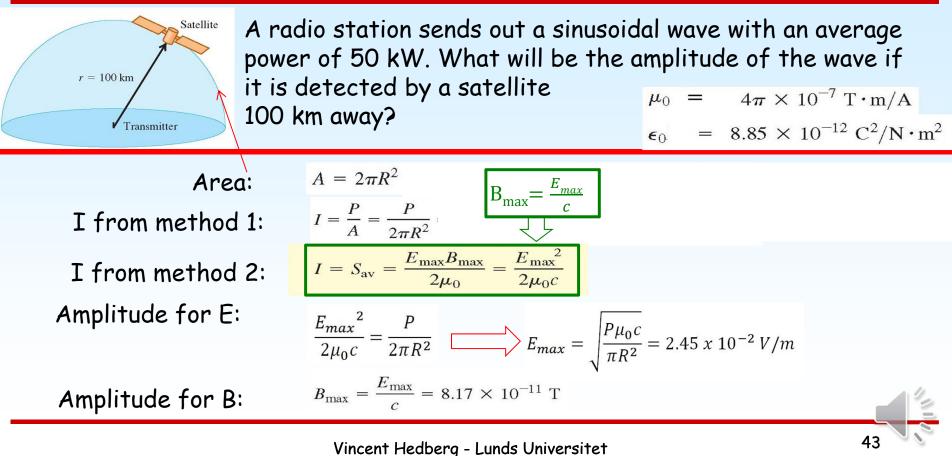
$$\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{N} \cdot \text{m}^2$$

$$S_x(x,t) = \frac{E_{\max}B_{\max}}{\mu_0}\cos^2(kx - \omega t)$$

$$I = S_{av} = \frac{E_{\max}B_{\max}}{2\mu_0}$$

$$I = S_{av} = \frac{E_{max}B_{max}}{2\mu_0} = \frac{(100 \text{ V/m})(3.33 \times 10^{-7} \text{ T})}{2 \times 4\pi \times 10^{-7} \text{ T} \cdot \text{m/A}} = 13.2 \text{ W/m}^2$$

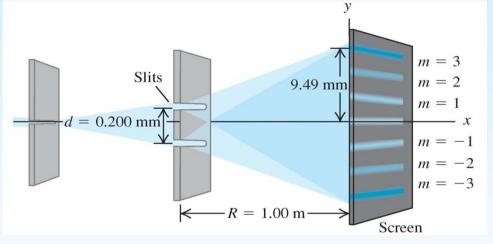
Electromagnetic waves: problems



Interference: Problem

Y = 9.49 mm for the line with m = 3

What is the wavelength of the light?



$$y_m = \mathbf{R} \frac{m\lambda}{d}$$

$$\lambda = \frac{y_m d}{mR} = \frac{(9.49 \times 10^{-3} \text{ m})(0.200 \times 10^{-3} \text{ m})}{(3)(1.00 \text{ m})}$$

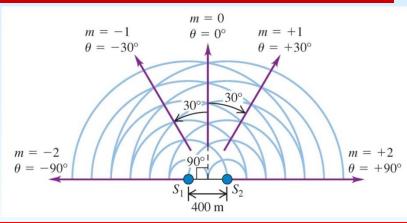
$$= 633 \times 10^{-9} \text{ m} = 633 \text{ nm}$$

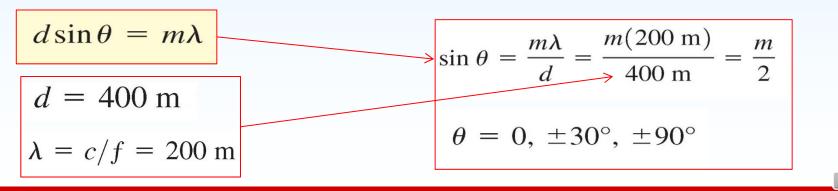
Vincent Hedberg - Lunds Universitet

Interference: Problem

Two antennas send out radio waves with f = 1500 kHz. They sit 400 m apart.

Why is the intensity greatest at 0, 30 and 90 degrees ?





Interference: Problems

46

Two antennas emit radio waves at f = 60.0 MHz. They sit 10.0 m apart. The intensity is 0.020 W/m² at a distance of 700 m for m = 0.

What is the intensity at the distance 700 m for $\theta = 4.00^{\circ}$?



$$y = 700 \tan(4.0^{\circ}) = 48.9 \text{ m}$$

R=700m $\theta = 4.0^{\circ}$

$$I = I_0 \cos^2 \frac{\phi}{2} = I_0 \cos^2 \left(\frac{\pi dy}{\lambda R}\right)$$

$$\lambda = c/f = 5.00 \text{ m}$$

$$d = 10.0 \text{ m}$$

$$I = 0.020 \cos^2(\pi \cdot 10.0 \cdot 48.9 / (5.00 \cdot 700)) = 0.016 \text{ W/m}^2$$

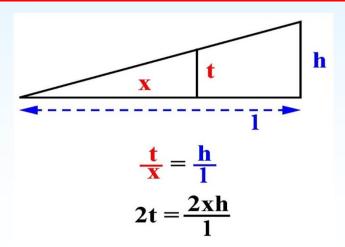
Interference: Problem

 $h = 0.0200 \, \text{mm}$

47

Two thin 10.0 cm long glass plates are separated at one end by a 0.02 mm thick paper. Light with a wavelengths of 500 nm creates dark interference lines.

What is the distance between the lines?



Destructive reflections: $2t = m\lambda$ (m = 0, 1, 2, ...) $\frac{2xh}{l} = m\lambda_0$ $x = m\frac{l\lambda_0}{2h} = m\frac{(0.100 \text{ m})(500 \times 10^{-9} \text{ m})}{(2)(0.0200 \times 10^{-3} \text{ m})} = m(1.25 \text{ mm})$ Successive dark fringes, corresponding to m = 1, 2, 3, ..., are spaced 1.25 mm apart.

 $l = 10.0 \, \text{cm}$

 $\lambda_0 = 500 \text{ nm}$

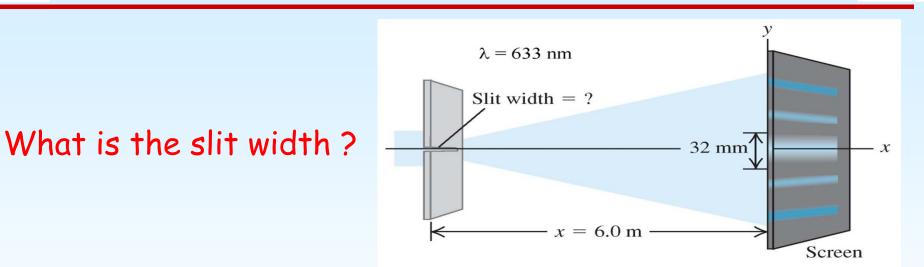
A thin layer of MgF_2 with n=1.38 is coating a lens with n = 1.52 in order to stop reflections of light with wavelength 550 nm.

How thick does the MgF_2 layer need to be ?

$$\lambda_{film} = \lambda_{air} / n_{film} = 550 \text{ nm} / 1.38 = 400 \text{ nm}$$

Film thickness: $t = \lambda_{film} / 4 = 400 / 4 = 100 \text{ nm}$

Diffraction: Problem



$$y_m = x \frac{m\lambda}{a}$$

 $x_m = x \frac{m\lambda}{a}$
 $x_m = \frac{x\lambda}{y} = \frac{(6.0 \text{ m})(633 \times 10^{-9} \text{ m})}{16 \times 10^{-3} \text{ m}} = 2.4 \times 10^{-4} \text{ m} = 0.24 \text{ mm}$

Vincent Hedberg - Lunds Universitet

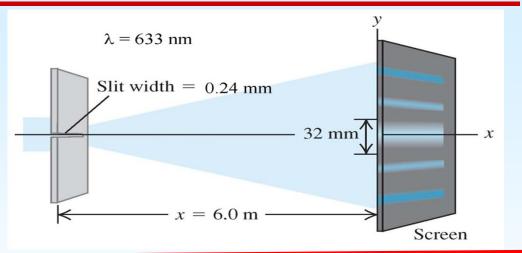
49

Diffraction: Problem

50

The intensity in the central peak is I_0 .

What is the intensity 3.0 mm away from this peak ?



λ = 633 nm x = 6.00 m a = 0.24 mm y = 3.0 mm $\tan \theta = y/x = (3.0 \times 10^{-3} \text{ m})/(6.0 \text{ m}) = 5 \times 10^{-4} = \sin(\theta)$

$$\beta = \frac{2\pi}{\lambda} a \sin \theta = \frac{2\pi (2.4 \times 10^{-4} \text{ m})(5.0 \times 10^{-4})}{6.33 \times 10^{-7} \text{ m}} = 1.20 \text{ rad}$$
$$I = I_0 \left[\frac{\sin(\beta/2)}{\beta/2} \right]^2 = I_0 \left(\frac{\sin 0.60}{0.60} \right)^2 = 0.89I_0$$

5

The intensity in the central peak in a single slit spectrum is I_0 .

What is the intensity at a point where the phase difference between waves from the top and bottom of the gap is 66 radians?

If this point is 7.0° from the central peak, how many wavelengths wide is the gap?

$$\beta = 66 \text{ rad}$$

$$I = I_0 \left[\frac{\sin(\beta/2)}{\beta/2} \right]^2$$

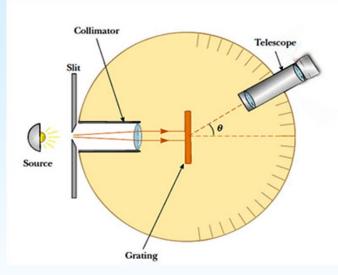
$$I = I_0 \left[\frac{\sin(33 \text{ rad})}{33 \text{ rad}} \right]^2 = (9.2 \times 10^{-4}) I_0$$

$$\frac{\alpha}{\lambda} = \frac{\beta}{2\pi \sin \theta} = \frac{66 \text{ rad}}{(2\pi \text{ rad}) \sin 7.0^\circ} = 86$$

Vincent Hedberg - Lunds Universitet

Diffraction: Problem

52



https://www.youtube.com/watch?v=b85paV77dS8

Grating: 1000 slits per mm 1st order maximum at 24° What is	
$\frac{d\sin\theta = m\lambda}{\theta = 24^{\circ}}$ with $d = 1 \text{ mm} / 1000 \text{ slits} = 10^{-6} \text{ m}$	
$\lambda = d \sin(\theta) = 10^{-6} \sin(24^{\circ}) = 0.407 \times 10^{-6} = 407 \text{ nm}$	